
The Zynq® Book
Tutorials

for Zybo and ZedBoard

The Zynq® Book
Tutorials

for Zybo and ZedBoard

Louise H. Crockett

Ross A. Elliot

Martin A. Enderwitz

David Northcote

Series Editors: Louise H. Crockett and Robert W. Stewart

Department of Electronic and Electrical Engineering

University of Strathclyde

Glasgow, Scotland, UK

August 2015

This edition first published August 2015 by Strathclyde Academic Media.
© Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz and David Northcote.

Open Source Licence to Use and Reproduce

This book is available in print and as an electronic book (PDF format).
Text and diagrams from this book may be reproduced in their entirety and used for non-profit academic purposes, provided that a clear reference to the original
source is made in all derivative documents. This reference should be of the following form:
L. H. Crockett, R. A. Elliot, M. A. Enderwitz and D. Stewart, The Zynq Book Tutorials for Zybo and ZedBoard, First Edition, Strathclyde Academic Media, 2015.
Requests to use content from this book for other than non-profit academic purposes should be made to info@zynqbook.com.
This book may not be reproduced in its original form and sold by any unauthorised third party.

Tutorial Files

Tutorial files are distributed via the book’s companion website: www.zynqbook.com.

Warning and Disclaimer

The best efforts of the authors and publisher have been used to ensure that accurate and current information is presented in this book. This includes researching
the topics covered and developing examples. The material included is provided on an “as is” basis in the best of faith, and neither the authors and publishers make
any warranty of any kind, expressed or implied, with regard to the documentation contained in this book. The authors and publisher shall not be held liable for
any loss or damage resulting directly or indirectly from any information contained herein.

Trademarks

ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
This publication is independent and it is not affiliated with, or endorsed, sponsored or authorised by ARM Limited.
Xilinx, the Xilinx logo, ISE, Vivado, and Zynq are registered trademarks of Xilinx. All rights reserved.
MATLAB and Simulink are registered trademarks of MathWorks, Inc.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.
All other trademarks used in this book are acknowledged as belonging to their respective companies. The use of trademarks in this book does not imply any affil-
iation with, or endorsement of, this book by trademark owners.

http://www.zynqbook.com

Acknowledgements

This is a new version of the tutorials accompanying The Zynq Book. It is based in Vivado 2015.1, and now

supports both the ZedBoard and the Zybo development boards.

A number of people contributed valuable of feedback on the original set of tutorials, on which these are

based. Austin Lesea and Y. C. Wang at Xilinx tested the tutorials at an early stage in their creation, and gave

us several useful suggestions. At the University of Strathclyde, Iain Chalmers, Sarunas Kalade, Damien Muir

and Craig Ramsay have also been greatly helpful in working through various versions of the tutorials and

telling us about their user experiences.

Once again, our sincerest thanks must go to Cathal McCabe of Xilinx University Program, who has not only

provided vital feedback and support in the creation of the tutorial material, but has also coordinated the

distribution of those materials to others.

Louise Crockett, Ross Elliot, Martin Enderwitz, and David Northcote.

August 2015.
i

How to Use This Book

Example Files and Ebook Version

In order to follow The Zynq Book Tutorials, you should download a set of prepared files from the book’s

website:

www.zynqbook.com

An electronic book (non-printable PDF) version of this set of tutorials can also be downloaded from the

above link.

Instructions for Zybo and ZedBoard Development Boards

As you read through the tutorials, you will notice that certain procedures have different variations

depending on the development board being used. Where a sequence of instructions is board-specific (i.e.

relating either to the ZedBoard or the Zybo), the start of the sequence is indicated by a coloured block icon

in the left hand margin:

for ZedBoard

for Zybo

The resumption of instructions common to both boards is marked with another icon:

Simply pick out the instructions relevant to your board, by identifying either the or icon, and

then look forward to find where to the main flow.

Operating System

The Zynq Book Tutorials have been tested using the Microsoft Windows operating system. It is expected

that they will also function on the Linux Kernel OS, although this has not been tested.

Zed

Zybo

Resume

Zed Zybo

Resume
ii

http://www.zynqbook.com

Contents
1. First Designs on Zynq 1
Creating a First IP Integrator Design ... 4
Creating a Zynq System in Vivado ...12
Creating a Software Application in the SDK ..24

2. Next Steps in Zynq SoC Design 35
Expanding the Basic IP Integrator Design ..38
Creating a Zynq System with Interrupts in Vivado ..42
Creating a Software Application in the SDK ..55
Adding a Further Interrupt Source ..61

3. Designing With Vivado HLS 67
Creating Projects in Vivado HLS ...70
Design Optimisation in Vivado HLS ..77
Interface Synthesis ..88

4. IP Creation 91
Creating IP in HDL ..94
Creating IP in MathWorks HDL Coder ... 118
Creating IP in Vivado HLS ... 128

5. Adventures with IP Integrator 137
Importing IP to the Vivado IP Catalog ... 140
Audio in Vivado IP Integrator ... 150
Creating an Audio Software Application in SDK ... 166
iii

The Zynq Book Tutorials 1

First Designs on Zynq

v1.5, June 2015
1

Revision History

Date Version Changes

14/06/2013 1.0 First release for Vivado Design Suite version 2013.1

19/06/2013 1.1 Updated for changes in Vivado Design Suite version 2013.2

27/01/2014 1.2 Updated for changes in Vivado Design Suite version 2013.4

30/04/2014 1.3 Updated for changes in Vivado Design Suite version 2014.1

1/04/2015 1.4 Updated for changes in Vivado Design Suite version 2014.4

13/04/2015 1.4.1 Updated to include Zybo development board for Vivado
Design Suite version 2014.4

18/06/2015 1.5 Updated for changes in Vivado Design Suite Version 2015.1
2 First Designs on Zynqwww.zynqbook.com

Introduction
This tutorial will guide you through the process of creating a first Zynq design using the Vivado™ Integrated
Development Environment (IDE), and introduce the IP Integrator environment for the generation of a
simple Zynq processor design to be implemented on a Zynq development board. The Software Development
Kit (SDK) will then be used to create a simple software application which will run on the Zynq’s ARM
Processing System (PS) to control the hardware that is implemented in the Programmable Logic (PL).

The tutorial is split into three exercises, and is organised as follows:

Exercise 1A - This exercise will guide you through the process of launching Vivado IDE and creating a
project for the first time. The various stages of the New Project Wizard will be introduced.

Exercise 1B - In this exercise, we will use the project that was created in Exercise 1A to build a simple Zynq
embedded system with the graphical tool, IP Integrator, and incorporating existing IP from the Vivado IP
Catalog. A number of design aids will be used throughout this exercise, such as the Board Automation
feature which automates the customisation of IP modules for a specified device or board. The Designer
Assistance feature, which assists with the connections between the Zynq PS and the IP modules in the PL
will also be demonstrated.

Once the design is finished, a number of stages will be undertaken to complete the hardware system and
generate a bitstream for implementation in the PL. The completed hardware design will then be exported to
the Software Development Kit (SDK) for the development of a simple software application in Exercise 1C.

Exercise 1C - In this short third exercise, the SDK will be introduced, and a simple software application will
be created to allow the Zynq processor to interact with the IP implemented in the PL. A connection to the
hardware server that allows the SDK to communicate with the Zynq processors will be established. The
software drivers that are automatically created by the Vivado IDE for IP modules will be explored and
integrated into the software application, before finally building and executing the software application on
the Zynq.

NOTE: Throughout all of the practical tutorial exercise we will be using C:\Zynq_Book as the working
directory. If this is not suitable, you can substitute it for a directory of your choice, but you should be aware
that you will be required to make alterations to some source files in order to complete exercises successfully.
3First Designs on Zynq www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
Creating a First IP Integrator Design

In this exercise we will create a new project in Vivado IDE by moving through the stages of the

Vivado IDE New Project Wizard.

The Zybo requires a one time additional set-up procedure in order to set the Default Part

correctly. This is necessary as Vivado 2015.1 does not contain a board part for the Zybo

development board. If you have already configured Vivado 2015.1 with the Zybo board part, you

can skip this procedure and start from Step (a).

Open windows explorer and navigate to the following location within the Zynq book source

files:

C:\Zynq_Book\sources\zybo\setup\board_part

In this directory you will see a file named zybo. This contains the board part for the Rev. B.3

Zybo development board. You may also check the revision of your Zybo by inspecting the

bottom side of your board. Updated board parts can be retrieved from the Digilent Website

using the following link:

https://reference.digilentinc.com/vivado:boardfiles

Copy the zybo file by right clicking on the file and selecting copy as shown below:

Open a second windows explorer and navigate to the following location in the Vivado 2015.1

installation directory:

{Vivado installation directory}\2015.1\data\boards\board_parts\zynq

This directory is responsible for all the board parts of different Zynq boards that can be used

in the Vivado 2015.1 design suite. We will now be adding the Zybo development board to the

directory. You may find that a file named zybo already exists, ignore this and carry on with the

Exercise 1A

Zybo
4 First Designs on Zynqwww.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
following procedure.

Right click on a blank space in the folder and select paste as shown below:

A dialogue window may appear asking to merge the incoming folder if a zybo folder currently

exists. Click Yes.

You have now successfully added the Zybo board part to the Vivado 2015.1 Design Suite.

We will start by launching the Vivado IDE.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to Start

> All Programs > Xilinx Design Tools > Vivado 2015.1> Vivado 2015.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 1.1.

Resume

Figure 1.1: Vivado IDE Getting Started Screen
5First Designs on Zynq www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
(c) Select the option to Create New Project and the New Project Wizard will open, as in Figure 1.2.

Click Next.

(d) At the Project Name dialogue, enter first_zynq_design as the Project name and C:/

Zynq_Book as Project location.

Make sure that you select the option to Create project subdirectory. All options should be

the same as shown below:

Click Next.

A directory named Zynq_Book will be created on your C drive if it did not already exist.

(e) At the Project Type dialogue, select RTL Project and ensure that the option Do not specify

sources at this time is not selected:

Click Next.

Figure 1.2: New Project Dialogue
6 First Designs on Zynqwww.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
(f) Select VHDL as the Target language and Mixed as the Simulator Language in the Add

Sources dialogue:

If existing sources, in the form of HDL or netlist files, were to be added to the project they

could be imported at this stage.

As we do not have any sources to add to the project, click Next.

(g) The Add Existing IP (optional) dialogue will open.

If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.

This is the stage where any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) From the Default Part dialogue window,

Select Boards from the Select dialogue, click ZedBoard Zynq Evaluation and Development

Kit from the Display Name list and All from the Board Rev list, as shown in Figure 1.3. Select

the appropriate revision for your board (in this case Rev. D has been selected).

Click Next.

Zed

Figure 1.3: Zedboard Default Part Dialogue Options
7First Designs on Zynq www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
Select Boards from the Select dialogue, click Zybo from the Display Name list and All from the

Board Rev list, as shown in Figure 1.4. Select the appropriate revision for your board (in this

case Rev. B.3 has been selected).

Click Next.

(j) In the New Project Summary dialogue, review the specified options, and click Finish to create

the project.

Now that we have created our first project in Vivado IDE, we can now move on to creating our first Zynq
embedded system design.

Before doing that, the Vivado IDE tool layout should be introduced. The default Vivado IDE environment
layout is shown in Figure 1.5 (other layouts can be chosen by selecting different perspectives). This layout is
specifically targeted for the Zedboard. If you are using the Zybo, you will see a slightly different layout.

With reference to the numbered labels in Figure 1.5, the main components of the Vivado IDE environment
are:

1. Menu Bar - The main access bar gives access to the Vivado IDE commands.

2. Main Toolbar - The main toolbar provides easy access to the most commonly used Vivado IDE

commands. Tooltips provide information about each command on the toolbar and these can be

viewed by hovering the mouse pointer over the buttons, as shown in Figure 1.6.

Zybo

Figure 1.4: Zybo Default Part Dialogue Options

Resume
8 First Designs on Zynqwww.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
3. Workspace - The workspace provides a larger area for panels which require a greater screen

space and those with a graphical interface, such as:

• Schematic panel

• Device panel

• Package panel

Figure 1.5: Vivado IDE Environment Layout (Zedboard)

31 2 4

5 86 7

Figure 1.6: Toolbar tooltips
9First Designs on Zynq www.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
• Text editor panel

4. Project Status Bar - The project status bar displays the status of the currently active design.

5. Flow Navigator - The Flow Navigator provides easy access to the tools and commands that are

necessary to guide your design from start to finish, starting in the Project Manager section with

design entry and ending with bitstream generation in the Program and Debug section. Run

commands are available in the Simulation, Synthesis and Implementation sections to simulate,

synthesise and implement the active design.

6. Data Windows Pane -The Data Windows pane, by default, displays information that relates to

design data and sources, including:

• Properties window - Shows information about selected logic objects or device resources.

• Netlist window - Provides a hierarchical view of the synthesised or elaborated logic design.

• Sources window - Shows IP Sources, Hierarchy, Libraries and Compile Order views.

7. Status Bar - The status bar displays a variety of information, including:

• Detailed information regarding menu bar and toolbar commands will be shown in the lower
left side of the status bar when the command is accessed.

• When hovering over an object in the Schematic window with the mouse pointer, the object
details appear in the status bar.

• During constraint and placement creation in the Device and Package windows, validity and
constraint type will be shown on the left side of the status bar. Site coordinates and type will
be shown in the right side.

• The task progress of a running task will be relocated to the right side of the status bar when
the Background button is selected.

8. Results Window Area -The Results Window displays the status and results of commands in a

set of windows grouped in the bottom of the Vivado IDE environment. As commands progress,

messages are generated and log files and reports are created. The related information is shown

here. The default windows are:

• Messages - Displays all messages for the active design.

• Tcl Console - Tcl commands can be entered here and a history of previous commands and
outputs are also available.

• Reports - Quick access is provided to the reports generated throughout the design flow.
10 First Designs on Zynqwww.zynqbook.com

Exercise 1A: Creating a First IP Integrator Design
• Log -Displays the log files generated by the simulation, synthesis and implementation
processes.

• Design Runs -Manages runs for the current project.

Additional windows that can appear in this area as required are: Find Results window, Timing

Results window and Package Pins window.

With the layout of the Vivado IDE environment introduced, we can now move on to creating the Zynq
system.
11First Designs on Zynq www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
Creating a Zynq System in Vivado

In this exercise we will create a simple Zynq embedded system which implements a General

Purpose Input/Output (GPIO) controller in the PL of the Zynq device. The GPIO controller will

connect to the LEDs. It will also be connected to the Zynq processor via an AXI bus connection,

allowing the LEDs to be controlled by a software application which we will create in Exercise 1C.

A graphical representation of the Zynq embedded design is provided in Figure 1.7.

We will begin by creating a new Block Design in Vivado IDE.

(a) In the Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 1.8:

The Create Block Design dialogue will open.

Exercise 1B

LEDs

Zynq

PS
AXI GPIO

Zynq PL

Development Board

AXI Connection

Figure 1.7: Zynq Embedded Design for Exercise 1B

Figure 1.8: Creating a new Block Design in Flow Navigator
12 First Designs on Zynqwww.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(b) Enter first_zynq_system in the Design name box, as in Figure 1.9:

Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.

The first block that we will add to our design will be a Zynq Processing System.

(c) In the Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

1.10.

Alternatively, select the Add IP button in the toolbar at the left of the canvas, shown in Figure

1.11.

Figure 1.9: Create Block Design dialogue

Figure 1.10: Add IP Option Figure 1.11: Add IP option in IP Integrator
canvas information message
13First Designs on Zynq www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
The pop-up IP Catalog window will open, as in Figure 1.12.

(d) Enter zynq in the search field and select the ZYNQ7 Processing System, as shown in Figure

1.13. Be careful not to select the BFM version and press the Enter key on your keyboard.

You should see a similar message to the following in the Tcl Console window to confirm that

the processing system has indeed been added to the design correctly:

create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.5
processing_system7_0

Messages like this will be displayed in the Tcl Console window for all actions carried out on IP

Integrator blocks.

The next step is to connect the DDR and FIXED_IO interface ports on the Zynq PS to the top-level

interface ports on the design.

Figure 1.12: Pop-up IP Catalog Window

Figure 1.13: Adding ZYNQ7 Processing System from IP CatalogCatalog
14 First Designs on Zynqwww.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(e) Click the Run Block Automation option from the Designer Assistance message at the top of

the Diagram window, as shown in Figure 1.14.

In the Run Block Automation dialogue, ensure that the option to Apply Board Preset is

selected and click OK. The external connections for both the DDR and FIXED_IO interfaces

will now be generated.

Your block diagram should now resemble Figure 1.15.

As the ZedBoard platform is the target development board, and this was specified on

creation of the project, Vivado will configure the Zynq processor block accordingly.

In the Run Block Automation dialogue, ensure that the option to Apply Board Preset is

selected and click OK. The external connections for both the DDR and FIXED_IO interfaces

will now be generated.

Figure 1.14: Run Block Automation - Processing System

Zed

Figure 1.15: Zedboard ZYNQ7 Processing System External Connections

Zybo
15First Designs on Zynq www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
Your block diagram should now resemble Figure 1.16.

As the Zybo platform is the target development board, and this was specified on creation of

the project, Vivado will configure the Zynq processor block accordingly.

Now that the main Zynq PS has been added to our design and configured, we can now add

further blocks which will be placed in the PL to add functionality to the system. In this case we will

only be adding a single block, AXI GPIO, to allow us to access the LEDs on the development

board.

(f) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the

search field and add an instance of the AXI GPIO IP.

We will now use the IP Integrator Designer Assistance tool to automate the connection of the AXI

GPIO block to the ZYNQ7 Processing System.

Figure 1.16: Zybo ZYNQ7 Processing System External Connections

Resume
16 First Designs on Zynqwww.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(g) Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 1.17.

This will automate the process of connecting the GPIO to an AXI port, and will automatically

instantiate two further IP blocks:

• Processor System Reset Module - This provides customised resets for an entire

processing system, including the peripherals, interconnect and the processor itself.

• AXI Interconnect - Provides an AXI interconnect for the system, allowing further IP and

peripherals in the PL to communicate with the main processing system.

Click OK.

All connections between the blocks should be made automatically.

(h) One final connection is required to connect the AXI GPIO block to the LEDs on the

development board. This can also be completed using Designer Assistance.

Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window. The Run Connection Automation dialogue will open, as shown in Figure

1.18.

Figure 1.17: Run Block Automation - GPIO Block

Zed
17First Designs on Zynq www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
Select /axi_gpio_0/GPIO.

Select leds_8bits from the Select Board Part Interface drop-down menu, and click OK.

The gpio interface of the AXI GPIO block will now be connected to the LEDs on the

development board, and your complete design should resemble Figure 1.19.

The positions of the individual IP blocks in your design may vary slightly from Figure 1.19, but

the blocks and their connections should be the same.

Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window. The Run Connection Automation dialogue will open, as in Figure 1.20.

Figure 1.18: Zedboard Run Connection Automation Dialogue - GPIO Block

Figure 1.19: Zedboard, Zynq Processor System

Zybo
18 First Designs on Zynqwww.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
Select /axi_gpio_0/GPIO.

Select leds_4bits from the Select Board Part Interface drop-down menu, and click OK.

The gpio interface of the AXI GPIO block will now be connected to the LEDs on the

development board, and your complete design should resemble Figure 1.21.

The positions of the individual IP blocks in your design may vary slightly from Figure 1.21, but

the blocks and their connections should be the same.

IP Integrator will automatically assign a memory map for all IP that is present in the design. We

will not be changing the memory map in this tutorial, but for future reference we will take a look

at the Address Editor.

Figure 1.20: Zybo Run Connection Automation Dialogue - GPIO Block

Figure 1.21: Zybo, Zynq Processor System

Resume
19First Designs on Zynq www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(i) Select the Address Editor tab from the top of the Workspace window, as shown in Figure 1.22,

and expand the Data group.

You can see that IP Integrator has already assigned a memory map (the mapping of specific

sections of memory to the memory-mapped registers of the IP blocks in the PL) to the AXI

GPIO interface, and that it has a range of 64K.

Now that our system is complete, we must first validate the design before generating the HDL

design files.

(j) Save your design by selecting File > Save Block Design from the Menu Bar.

(k) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a

Design-Rule-Check (DRC).

Alternatively, select the Validate Design button, , from the Main Toolbar, or right-cick

anywhere in the Diagram canvas and select Validate Design.

(l) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK to dismiss the message.

With the design successfully validated, we can now move on to generating the HDL design files

for the system.

(m) Switch to the Sources Tab by selecting Window > Sources from the Menu Bar.

Figure 1.22: Address Editor Tab
20 First Designs on Zynqwww.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(n) In the Sources window, right-click on the top-level system design, which in this case is

first_zynq_system, and select Create HDL Wrapper, as shown in Figure 1.23.

The Create HDL Wrapper dialogue window will open. Select Let Vivado manage wrapper and

auto-update, and click OK.

This will generate the top level HDL wrapper for our system.

All of the source files for the IP blocks that were used in the IP Integrator block diagram, as

well as any relevant constraints files, will be generated during the synthesis process. As we

specified VHDL as the target language when creating the project in Exercise 1A, all generated

source files will be VHDL.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(o) In Flow Navigator, click Generate Bitstream from the Program and Debug section. If a

dialogue window appears prompting you to save your design, click Save.

(p) A dialogue window will open requesting that you launch synthesis and implementation

before starting the Generate Bitstream process. Click Yes to accept.

The combination of running the synthesis, implementation and bitstream generation

processes back-to-back may take a few minutes, depending on the power of your computer

system.

Figure 1.23: Create HDL Wrapper
21First Designs on Zynq www.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
(q) Once the bitstream generation is finished, a dialogue window will open to inform you that

the process has been completed successfully, as in Figure 1.24.

Select Open Implemented Design, and click OK.

At this point you will be presented with the Device view, where you can see the PL resources

that are utilised by the design. With the default colour scheme, these are shown in light blue.

With the bitstream generated, the building of the hardware image is complete. It must now be

exported to a software environment where we will build a software application to control and

interact with the custom hardware.

The final step in Vivado is to export the design to the SDK, where we will create the software

application that will allow the Zynq PS to control the LEDs on the development board.

(r) Select File > Export > Export Hardware... from the Menu Bar.

(s) The Export Hardware dialogue window will open. Ensure that the option to Include bitstream

is selected, as in Figure 1.25, and Click OK.

Figure 1.24: Bitstream Generation Completed Dialogue Window

Figure 1.25: Export Hardware for SDK
22 First Designs on Zynqwww.zynqbook.com

Exercise 1B: Creating a Zynq System in Vivado
NOTE: For the option to Include bitstream to be enabled, an implemented design must be

active. This is the reason that we opened the implemented design in Step (q).

(t) Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

This concludes the steps that are required in Vivado IDE. All hardware components of the system

have been configured and generated. In the next exercise we will move on to creating a simple

software component which will control the system.
23First Designs on Zynq www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
Creating a Software Application in the SDK

In this exercise we will create a simple software application which will control the LEDs on the

Zynq development board. The software application will run on the Zynq processing system and

communicate with the AXI GPIO block which is implemented in the PL. We will take a look at the

software drivers that are created by IP Integrator for each of the IP modules, before building and

executing the software on the development board.

The SDK should have opened after the conclusion of Exercise 1B. If it did not open, you can open

the SDK by navigating to Start > All Programs > Xilinx Design Tools > SDK 2015.1 > Xilinx SDK

2015.1

When launching the SDK from the start menu, you will need to specify the workspace that was

created when the Vivado IP Integrator design was exported in Exercise 1B. It should be:

C:\Zynq_Book\first_zynq_design\first_zynq_design.sdk

Enter this in the Workspace field of the Workspace Launcher dialogue window, as shown in Figure

1.26.

With the SDK open, we can begin the creation of our software application. You will already be

able to see the Hardware Platform Project, which will be automatically created and opened. It is

now necessary to add an Application Project and a Board Support Package.

(a) Select File > New > Application Project from the Menu bar.

(b) The New Project dialogue window will open. Enter LED_test in the Project name field, as

shown in Figure 1.27, keeping all other options with the default settings. Click Next (Be

careful not to select Finish).

Exercise 1C

Figure 1.26: SDK Workspace Launcher Dialogue Window
24 First Designs on Zynqwww.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
.

(c) At the New Project Templates screen, select Empty Application, as in Figure 1.28, and click

Finish to create the project.

NOTE: the new project should open automatically. If it doesn’t, you may need to close the

Welcome tab in order to view the project.

Figure 1.27: New Application Project Dialogue

Figure 1.28: New Project Template Dialogue
25First Designs on Zynq www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
With the new Application Project created, we can now import some pre-prepared source code for

the application.

(d) In the Project Explorer panel, expand LED_test and highlight the src directory. Right-click and

select Import..., as shown in Figure 1.29.

(e) The Import window will open. Expand the General option and highlight File System, as in

Figure 1.30, and click Next.

Figure 1.29: Import Source Files to Project

Figure 1.30: Import File System
26 First Designs on Zynqwww.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(f) In the Import File System window, click the Browse... button.

The source file directory will depend on the Zynq development board that is in use. If you are

using the Zedboard, navigate to: C:\Zynq_Book\sources\zedboard\first_zynq_design. If you

are using the Zybo, navigate to C:\Zynq_Book\sources\zybo\first_zynq_design

Click OK.

(g) Select the file LED_test_tut_1C.c, as shown in Figure 1.31, and click Finish.

The C source file will be imported and the project should automatically build. You should see

a similar message to Figure 1.32 in the Console window.

Figure 1.31: Import C Source File
27First Designs on Zynq www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(h) Open the imported source file by expanding the src folder and double-clicking on

LED_test_tut_1C.c, and explore the code.

Note the command XGpio_Initialize(&Gpio, GPIO_DEVICE_ID); This is a function

provided by the GPIO device driver in the file xgpio.h. It initialises the XGpio instance, Gpio,

with the unique ID of the device specified by GPIO_DEVICE_ID.

If you look toward the top of the source file you will see that GPIO_DEVICE_ID is defined as

XPAR_AXI_GPIO_0_DEVICE_ID. The value of XPAR_AXI_GPIO_0_DEVICE_ID can be

found by opening the file, xparameters.h, which is automatically generated by Vivado IDE

when exporting a hardware design to the SDK. It contains definitions of all the hardware

parameters of the system.

The function, XGpio_SetDataDirection(&Gpio, LED_CHANNEL, 0xFF); is also

provided by the GPIO device driver, and sets the direction of the specified GPIO port. As we

are specifying the LEDs in this case, it is specifying an output. Bits set to ‘0’ are output, and

bits set to ‘1’ are input. As there are 8 LEDs on the Zedboard, by setting the LED channel

direction to a value of 0x00, or 00000000 in binary, we are setting all 8 LEDs as outputs.

Similarly as there are 4 LEDs on the Zybo board, by setting the LED channel direction a value

of 0x0 or 0000 in binary, we are setting all 4 LEDs as outputs.

Further information on the peripheral drivers can be found by selecting the system.mss tab.

A list of all the peripherals in the system is provided, along with links to available

documentation and examples, as shown in Figure 1.33.

Figure 1.32: Build Finished Console Message
28 First Designs on Zynqwww.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 1B.

Figure 1.33: Peripheral Documentation and Drivers in system.mss tab
29First Designs on Zynq www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(i) Ensure that the Zynq development board is powered on and that the JTAG port is connected

to the PC via the provided USB-A to USB-B cable. Additionally the board jumpers must also

be correctly set so that to enable JTAG mode, which allows the hardware to be programmed

and access for system debugging tools.

The Zedboard requires five jumpers to be set as shown in Figure 1.34. This configuration will

enable JTAG mode.

Zed

GND

SIG

3V3

JP
11

JP
10

JP
9

JP
8

JP
7

JTAG Mode

JTAG Port

UART Port

USB Port

Figure 1.34: Zedboard JTAG Jumper Configuration
30 First Designs on Zynqwww.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
One jumper is set to enable JTAG mode on the Zybo development board. Additionally the

board’s power supply is set using a jumper with the possibility of receiving power from USB,

wall or battery. Both JTAG and power jumper configurations are set in Figure 1.35. The board

has been set to receive power from USB.

Zybo

JT
AG

Q
SP

I

SD

JP5

JTAG Mode

GND

USB

VU5VO

WALL

Power Set-up

JP7

JTAG & UART
Port

USB Port

Figure 1.35: Zybo JTAG and Power Jumper Configurations
31First Designs on Zynq www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(j) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the

Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 1.36.

NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard

will turn blue. Similarly the DONE LED on the Zybo will turn green.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.

Resume

Figure 1.36: Program FPGA dialogue Window
32 First Designs on Zynqwww.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
(k) Select the project LED_test in Project Explorer. Right-click and select Run As > Launch on

Hardware (GDB) as in Figure 1.37.

After a few seconds the LEDs on the ZedBoard should begin to flash between the states

highlighted in Figure 1.38.

Figure 1.37: Launch Application onto the Zynq Development Board

Zed

State B:

State A:

Figure 1.38: Zedboard LED Flashing States
33First Designs on Zynq www.zynqbook.com

Exercise 1C: Creating a Software Application in the SDK
The LEDs on the Zybo should begin to flash between the states highlighted in Figure 1.39

You have successfully created and executed your first software application on the Zynq

processing system.

In summary a GPIO controller has been successfully implemented in the FPGA fabric of the Zynq

device, forming a connection between the Zynq Processing System and the development board

LEDs via an AXI interface. The Zynq Processing System was then programmed to control the LEDs

by means of a standalone software application with the capability to interface with the GPIO

controller in the FPGA fabric.

Zybo

State B:

State A:

Figure 1.39: Zybo LED Flashing States

Resume
34 First Designs on Zynqwww.zynqbook.com

The Zynq Book Tutorials 2

Next Steps in Zynq SoC Design

v1.4, June 2015
35

Revision History

Date Version Changes

13/09/2013 1.0 First release for Vivado Design Suite version 2013.2

27/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4

30/04/2014 1.2 Updates for changes in Vivado Design Suite version 2014.1

08/04/2015 1.3 Updated for changes in Vivado Design Suite version 2014.4

29/04/2015 1.3.1 Updated to include Zybo development board for Vivado
Design Suite version 2014.4

19/06/2015 1.4 Updated for changes in Vivado Design Suite version 2015.1
36 Next Steps in Zynq SoC Designwww.zynqbook.com

Introduction
This tutorial will guide you through the process of creating a Zynq design utilising interrupts. Using the
Vivado™ Integrated Development Environment (IDE) and the IP Integrator environment, a simple Zynq™
processor design, to be implemented on a Zynq development board, will be generated. The Software
Development Kit (SDK) will then be used to create a simple software application which will run on the
Zynq’s ARM Processing System (PS) to control the hardware that is implemented in the Programmable
Logic (PL). This tutorial leads on from the previous one, expanding on the skills acquired in it.

The tutorial is split into four exercises, and is organised as follows:

Exercise 2A — This exercise provides a further guide to the process of launching Vivado IDE and creating
a project using New Project Wizard.

Exercise 2B — In this exercise, we will use the project that was created in Exercise 2A to build a Zynq
embedded system utilising interrupts with IP Integrator and incorporating existing IP from the Vivado IP
Catalog. This will expand on previous knowledge gained in creating and connecting a block based system in
IP Integrator. The completed design will have an associated bitstream generated and will be exported to the
Xilinx SDK to participate in a test application.

Exercise 2C — In the Xilinx SDK, a test software application for the generated hardware system will be
created and explained. Running this application on a Zynq development board will demonstrate the
function of interrupts and how the application is coded to utilise them.

Exercise 2D — Finally, we will return to the system from Exercise 2B and include an additional source of
interrupt, making the necessary connections, generating a bitstream and exporting to the Xilinx SDK. We
will then modify our previous software application to inspect the operation of the altered system.
37Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2A: Expanding the Basic IP Integrator Design
Expanding the Basic IP Integrator Design

In this exercise we will expand upon the previous project in Vivado IDE by adding additional GPIO

and configuring the system to utilise interrupts. For the sake of clarity and understanding, we will

run through the building of a basic system once more. Start by launching the Vivado IDE.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to

Start > All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado 2015.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 2.1.

Exercise 2A

Figure 2.1: Vivado IDE Getting Started screen
38 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2A: Expanding the Basic IP Integrator Design
(c) Select the option to Create New Project as in Figure 2.2.

Click Next.

(d) At the Project Name dialogue, enter zynq_interrupts as the Project name and C:/Zynq_Book

as Project location.

Make sure that you select the option to Create project subdirectory. All options should be

the same as shown below:

Click Next.

A directory named Zynq_Book will be created on your C drive if it did not already exist.

(e) At the Project Type dialogue, select RTL Project and ensure that the option Do not specify

sources at this time is not selected:

Click Next.

Figure 2.2: New Project dialogue
39Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2A: Expanding the Basic IP Integrator Design
(f) Select VHDL as the Target language and Mixed as the Simulator Language in the Add

Sources dialogue:

If existing sources, in the form of HDL or netlist files, were to be added to the project they

could be imported at this stage.

As we do not have any sources to add to the project, click Next.

(g) The Add Existing IP (optional) dialogue will open.

If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.

This is the stage where any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) From the Default Part dialogue,

Select Boards from the Specify box and choose ZedBoard Zynq Evaluation and

Development Kit from the Display Name list and All from the Board Rev list, as shown in

Figure 2.3. Select the appropriate revision for your board (in this case Rev. D has been

selected).

Click Next.

Zed

Figure 2.3: Zedboard Default Part Dialogue Options
40 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2A: Expanding the Basic IP Integrator Design
Ensure you have carried out the Zybo board part set-up procedure at the beginning of

Exercise 1A. Select Boards from the Select dialogue click Zybo from the Display Name list and

All from the Board Rev list, as shown in Figure 2.4. Select the appropriate revision for your

board (in this case Rev. B.3 has been selected).

Click Next.

(j) In the New Project Summary dialogue, review the specified options, and click Finish to create

the project.

As in the previous tutorial we will now create the basic Zynq embedded system design before adding and
configuring additional IP to utilise hardware interrupts.

Zybo

Figure 2.4: Zybo Default Part Dialogue Options

Resume
41Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Creating a Zynq System with Interrupts in Vivado

In this exercise we will create a simple Zynq embedded system which implements two General

Purpose Input/Output (GPIO) controllers in the PL of the Zynq device, one of which uses the Zynq

development board’s push buttons to generate interrupts. The other GPIO controller will connect

to the LEDs. Both will also be connected to the Zynq processor via an AXI bus connection,

allowing the LEDs to be controlled by a software application which we will create in Exercise 2C.

(a) In the Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 2.5:

The Create Block Design dialogue will open.

(b) Enter zynq_interrupt_system in the Design name box, as in Figure 2.6:

Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.

Exercise 2B

Figure 2.5: Creating a New Block Design in Flow Navigator

Figure 2.6: Create Block Design Dialogue
42 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
The first block that we will add to our design will be a Zynq Processing System.

(c) In the Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

2.7.

Alternatively, select the Add IP button in the toolbar at the left of the canvas, shown in Figure

2.8.

Figure 2.7: Add IP Option

Figure 2.8: Add IP option in IP Integrator canvas information message
43Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
The pop-up IP Catalog window will open, as in Figure 2.9.

Enter zynq in the search field and select the ZYNQ7 Processing System, as shown in Figure

2.10, and press the Enter key on your keyboard.

(d) As in the previous tutorial, the next step is to connect the DDR and FIXED_IO interface ports

on the Zynq PS to the top-level interface ports on the design.

Select the Run Block Automation option from the Designer Assistance message at the top of

the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,

to generate the external connections for both the DDR and FIXED_IO interfaces, and apply

the relevant board presets.

Figure 2.9: Pop-up IP Catalog Window

Figure 2.10: Adding ZYNQ7 Processing System from IP Catalog

Zed
44 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Your block diagram should now resemble Figure 2.11.

As the Zedboard platform is the target development board, and this was specified on

creation of the project, Vivado will configure the Zynq processor block accordingly.

In the Run Block Automation dialogue, ensure that the option to Apply Board Preset is

selected and click OK. The external connections for both the DDR and FIXED_IO interfaces

will now be generated.

Your block diagram should now resemble Figure 2.12.

As the Zybo platform is the target development board, and this was specified on creation of

the project, Vivado will configure the Zynq processor block accordingly.

Figure 2.11: Zedboard ZYNQ7 Processing System External Connections

Zybo

Figure 2.12: Zybo ZYNQ7 Processing System External Connections
45Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Now that the main Zynq PS has been added to our design and configured, we can now add

further blocks which will be placed in the PL to add functionality to the system. In this case we

require an AXI GPIO block for the LEDs and another for the push buttons.

(e) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the

search field and add an instance of the AXI GPIO IP. Repeat this procedure to add a second

AXI GPIO block to the design.

(f) We will now use the IP Integrator Designer Assistance tool to automate the connection of the

AXI GPIO blocks to the ZYNQ7 Processing System.

Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 2.13.

Click OK to ensure automatic clock connection, which adds the Processor System Reset

Module and the AXI Interconnect blocks.

Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window and select /axi_gpio_0/GPIO.

The Run Connection Automation dialogue will open, as in Figure 2.14. Select btns_5bits

from the Select Board Part Interface drop-down menu, and click OK.

Resume

Zed

Figure 2.13: Zedboard Run Block Automation - GPIOinstance
46 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Repeat step (f) for the second GPIO block, this time selecting leds_8bits for /axi_gpio_1/

GPIO. This will result in a system that is similar to Figure 2.15.

Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 2.16.

Figure 2.14: Zedboard Run Connection Automation dialogue — GPIO

Figure 2.15: Zedboard Zynq Processor System

Zybo
47Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Click OK to ensure automatic clock connection, which adds the Processor System Reset

Module and the AXI Interconnect blocks.

Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window and select /axi_gpio_0/GPIO.

The Run Connection Automation dialogue will open, as in Figure 2.17. Select btns_4bits

from the Select Board Part Interface drop-down menu, and click OK.

Repeat step (f) for the second GPIO block, this time selecting leds_4bits for /axi_gpio_1/

GPIO. This will result in a system that is similar to Figure 2.18.

Figure 2.16: Zybo Run Block Automation - GPIOinstance

Figure 2.17: Zybo Run Connection Automation dialogue — GPIO
48 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
We now need to configure the system to utilise hardware interrupts from the push buttons to

trigger functions in the Zynq PS. Return to the Block Diagram.

(g) Double-click on the axi_gpio_0 block, which is connected to the push buttons, to open the

Re-customize IP window. Select IP Configuration tab as shown below:

In the IP Configuration window, enable interrupts from the push buttons by clicking in the

box highlighted in Figure 2.19 and click OK.

Figure 2.18: Zybo Zynq Processor System

Resume

Figure 2.19: Enabling GPIO interrupts
49Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
This will add an additional output port for the interrupt request to the GPIO block as shown

in Figure 2.20.

Now we must configure the Zynq PS to accept interrupt requests.

(h) Double-click on the Zynq PS block, processing_system7_0, to open the Re-Customize IP

window.

(i) Select Interrupts from the Page Navigator on the left-hand side and expand the menu on the

right as in Figure 2.21. Since we want to allow interrupts from the programmable logic to

the processing system, tick the box to enable Fabric Interrupts, then click to enable the

shared interrupt port as in Figure 2.21. This means interrupts from the PL can be connected

to the interrupt controller within the Zynq PS. Click OK.

(j) The final step is to create an interrupt connection between the ZYNQ7 Processing System

block and the axi_gpio_0 block.

Make a connection between the interrupt request of the GPIO block and the newly created

interrupt port of the Zynq PS, highlighted in Figure 2.22.

Figure 2.20: GPIO block with interrupt port

Figure 2.21: Configuring Zynq PS to utilise interrupts

Zed
50 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Your final design should resemble Figure 2.23, although the positioning of your blocks may

be different.

Make a connection between the interrupt request of the GPIO block and the newly created

interrupt port of the Zynq PS, highlighted in Figure 2.24.

Figure 2.22: Zedboard Zynq PS with interrupt port

Figure 2.23: Zedboard Zynq processor system with interrupts

Zybo
51Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
Your final design should resemble Figure 2.25, although the positioning of your blocks may

be different.

(k) Save your design by selecting File > Save Block Design from the Menu Bar.

(l) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a

Design-Rule-Check (DRC).

Alternatively, select the Validate Design button, , from the Main Toolbar.

(m) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK, to dismiss the message.

With the design successfully validated, we can now move on to generating the HDL design files

for the system. The procedure here is identical to the previous tutorial, First Designs on Zynq.

Figure 2.24: Zybo Zynq PS with interrupt port

Figure 2.25: Zybo Zynq processor system with interrupts

Resume
52 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(n) In the Sources window of the Data Windows pane, select the Sources tab.

(o) Right-click on the top-level system design, which in this case is zynq_interrupt_system, and

select Create HDL Wrapper, as shown in Figure 2.26.

The Create HDL Wrapper dialogue window will open. Accept the default option specifying

that Vivado should manage the wrapper and click OK.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(p) In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

(q) A dialogue window will open requesting that you launch synthesis and implementation

before starting the Generate Bitstream process. Click Yes to accept.

The combination of running the synthesis, implementation and bitstream generation

processes back-to-back may take a few minutes, depending on the power of your computer

system.

Figure 2.26: Create HDL Wrapper
53Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
(r) Once the bitstream generation is

complete a dialogue window will

open to inform you that the process

has been completed successfully, as in

Figure 2.27.

Select Open Implemented Design,

and click OK.

At this point you will be presented

with the Device view, where you can

see the PL resources which are utilised

by the design.

With the bitstream generation complete, the final step in Vivado is to export the design to the

SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the development board.

(s) Select File > Export > Export Hardware from the Menu Bar.

(t) The Export Hardware for SDK dialogue window will open. Ensure that the option to Include

bitstream is selected, as in Figure 2.28, and Click OK.

(u) Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

This concludes the steps that are required in Vivado IDE. All hardware components of the system

have been configured and generated. In the next exercise we will create the software application

that utilises this hardware system.

Figure 2.27: Bitstream Generation completion dialogue

Figure 2.28: Export Hardware for SDK
54 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
Creating a Software Application in the SDK

In this exercise a software application will be created that utilises hardware interrupts on the

Zynq development board. The push buttons will be used to increment a counter by different

values, and the count will be continuously displayed on the LEDs in binary form, where LED0

corresponds to the least significant bit (LSB) and the uppermost LED is the most significant bit

(MSB). This application will run on the Zynq processing system, communicating with the AXI GPIO

blocks implemented in the PL.

The SDK should have opened after the conclusion of Exercise 2B. If it did not open, you can open

the SDK by navigating to Start > All Programs > Xilinx Design Tools >SDK 2015.1> Xilinx SDK

2015.1 and specifying the workspace as in Exercise 1C.

(a) Select File > New > Application Project from the Menu bar.

(b) The New Project dialogue window will open. Enter interrupt_counter in the Project name

field, as shown in Figure 2.29, keeping all other options with the default settings. Click Next.

Exercise 2C

Figure 2.29: New Application Project dialogue
55Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
(c) At the New Project Templates

screen, select Empty Application,

as in Figure 2.30, and click Finish to

create the project.

NOTE: The new project should

open automatically. If it doesn’t,

you may need to close the

welcome tab in order to view the

project.

With the new Application Project

created, we can now import pre-

prepared source code for the

application.

(d) In the Project Explorer panel, expand interrupt_counter and highlight the src directory. Right-

click and select Import..., choosing General > File System as an import source.

(e) In the Import File System window, click the Browse... button.

(f) The source file directory will depend on the Zynq development board that is in use. If you are

using the Zedboard, navigate to: C:\Zynq_Book\sources\zedboard\zynq_interrupts. If

you are using the Zybo, navigate to C:\Zynq_Book\sources\zybo\zynq_interrupts.

Click OK.

(g) Select the file interrupt_counter_tut_2B.c, as shown in Figure 2.31, and click Finish.

This file contains C Code that has been written to perform the interrupt triggered counter

operation on the Zynq development board.

Figure 2.30: New Project Template dialogue
56 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
(h) Open the imported source file by expanding the src folder and double-clicking on

interrupt_counter_tut_2B.c, and explore the code.

The code has been fully commented, but will be briefly discussed here for clarity.

By now, you should be familiar with the use of drivers and parameters in configuring and

operating the GPIO. Remember, detailed information of these drivers can be found in the

system.mss file, explaining the purpose of each function and the parameters passed to it.

Predesignated parameters can also be found in xparameters.h.

The Zynq PS features a built in interrupt controller, initialised here as XScuGic INTCInst. This

handles all incoming interrupt requests passed to the PS and performs the function

associated with each interrupt source. It is also capable of prioritising multiple interrupt

sources to the requirements of the application.

Of particular note is the inclusion of the function BTN_Intr_Handler(void

*InstancePtr);. This is the interrupt handler function for the push buttons and is called

every time an interrupt request from the push buttons in the PL is received in the PS. This

performs a counter increment on each call and displays the value of the counter on the LEDs

in binary.

Figure 2.31: Import C source file
57Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
An initial setup function can be found below the main function. This is

InterruptSystemSetup(XScuGic *XScuGicInstancePtr);. The function initialises

and configures the interrupt controller in the Zynq PS, connecting the interrupt handler to

the interrupt source. It also makes a call to the latter function which enables the interrupt

sources and registers exceptions.

The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 2B.

Ensure that the Zynq development board is powered on and that the JTAG port is connected to

the PC via the provided USB-A to USB-B cable. Also ensure that the jumper positions are correct

as shown in the previous tutorial.

(i) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the

Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 2.32.

As in the previous tutorial, once the device has successfully been programmed, the DONE LED

on the ZedBoard will turn blue. Similarly the DONE LED on the Zybo will turn green.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.

Figure 2.32: Program FPGA dialogue window
58 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
(j) Select interrupt_counter in Project Explorer. Right-click and select Run As > Launch on

Hardware (GDB).

The counter increments by different values based on the push buttons which are pressed.

This operation is demonstrated in Figure 2.33.

Try pressing different push buttons and observing how the counter increments (can the

counter achieve 255?) Based on your findings, can you determine the value assigned to each

of the push buttons (BTNU, BTND, BTNL, BTNR and BTNC as noted on the ZedBoard)?

The counter increments by different values based on the push buttons which are pressed.

This operation is demonstrated in Figure 2.34.

Zed

LSBMSB

LED7 LED0

00000000 = 0

00000001 = 1

00000010 = 2

...
11111110 = 254

11111111 = 255

Figure 2.33: Zedboard LED flashing states

Zybo
59Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2C: Creating a Software Application in the SDK
Try pressing different push buttons and observing how the counter increments. Based on

your findings, can you determine the value assigned to each of the push buttons (BTN0,

BTN1, BTN2, BTN3 as noted on the Zybo)?

You have successfully created and executed a software application utilising interrupts on the

Zynq PS. The next step is to go back and add an additional interrupt source with higher priority

to alter the functionality of the system.

LSBMSB

LED3 LED0

0000 = 0

0001 = 1

0010 = 2

...

1110 = 14

1111 = 15

Figure 2.34: Zybo LED flashing states

Resume
60 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
Adding a Further Interrupt Source

In this exercise we will add an additional source of interrupt to the project created in Exercise 2B

in the form of an AXI Timer.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to

Start > All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado 2015.1

(b) When the program launches, open the previously created project by selecting Open Project.

The previously created project should appear in the list of recent projects as C:/Zynq_Book/

zynq_interrupts/zynq_interrupts.xpr so click on it. If it doesn’t, click Browse Projects... and

navigate to that directory, selecting zynq_interrupts.xpr and clicking open.

(c) Open the block design from the sources panel by expanding the sources and double clicking

on the block design as highlighted in Figure 2.35.

(d) With the block diagram now open we will add an AXI Timer to the design. In the Vivado IP

Integrator Diagram canvas, right-click anywhere and select Add IP. Enter timer in the search

field and add the IP AXI TIMER to the design by either dragging it onto the canvas or selecting

it and pressing ENTER.

Exercise 2D

Figure 2.35: Opening an existing block diagram

Figure 2.36: AXI Timer in the IP Catalog
61Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
(e) Select Run Connection Automation option from the Designer Assistance message at the top

of the Diagram window. In the Run Connection Automation window, select/axi_timer_0/

S_AXI to connect the timer to the AXI Interconnect. Click OK..

(f) Note that in Figure 2.37 the AXI Timer features an interrupt request, which requires

connection to the Zynq PS. However, we already have an interrupt connected to the input of

the PS. This input is a shared interrupt port, and so accepts multiple interrupts via one signal.

We therefore require an additional IP block to concatenate these two interrupt requests into

one signal. In the canvas, right-click anywhere and select Add IP. Enter concat in the search

field and add the IP Concat to the design.

(g) Remove the connection between the AXI_GPIO ip2intc_irpt and IRQ_F2P[0:0] on the Zynq

PS by clicking on the line between and pressing DELETE. Connect the output from he Concat

block, xlconcat_0 to this instead. Then, connect the interrupt request from the GPIO to

In0[0:0] and the interrupt from the timer to In1[0:0], creating a shared interrupt signal that

is passed to the PS.

Figure 2.37: AXI Timer in the block design

Figure 2.38: Concat in the block design
62 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
Your block diagram should be similar to Figure 2.39.

Your block diagram should be similar to Figure 2.40.

We now need to generate a new bitstream for our altered design.

Zed

Figure 2.39: Zedboard complete system with multiple interrupts sources

Zybo

Figure 2.40: Zybo complete system with multiple interrupts sources

Resume
63Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
(h) In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

(i) A dialogue window will open requesting that you launch synthesis and implementation

before starting the Generate Bitstream process. Click Yes to accept.

Again these back-to-back processes may take a few minutes, depending on the power of

your computer system.

(j) When this process is completed click OK.

(k) In Flow Navigator, select Implemented Design from the Implementation section to open the

hardware implementation diagram. If the design needs to reload click reload on the yellow

banner at the top of the hardware implementation screen. A current implemented design

must be open in order to export a hardware design.

(l) Select File > Export > Export Hardware... from the Menu Bar.

(m) The Export Hardware for SDK dialogue window will open. Ensure that the option to Include

bitstream is selected, and Click OK. A dialog will be presented asking if you wish to overwrite

an exported file, which is the initial system featuring a single interrupt. Select Yes for this and

any further prompts.

(n) Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

Once the SDK opens and builds the project, we will alter our application to make use of the

new interrupt source. Right-click on the project interrupt_counter in the Project Explorer

and select Delete.

The Delete Resources dialogue will open. Select the Delete project contents on disk

checkbox as in Figure 2.41, and click OK.

Figure 2.41: Confirm Delete Resources Dialogue
64 Next Steps in Zynq SoC Designwww.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
Repeat for the BSP, interrupt_counter_bsp. Select Continue if there are any further

prompts.

Repeat the steps outlined in Exercise 2C (a) to (h) for creating a new application project, BSP

and importing a source file, this time selecting interrupt_counter_tut_2D.c.

Notice the inclusion of a second interrupt handler, TMR_Intr_Handler(void *data);

which will increment the value of the counter after the timer has expired three times, writing

the new value to the LEDs.

Additional code has been included in the main to configure and start the timer, and full

details of these functions can be found in the system.mms. The function

IntcInitFunction(u16 DeviceId, XTmrCtr *TmrInstancePtr,XGpio

*GpioInstancePtr); also contains additional code to connect the timer interrupt to the

handler and enable it.

In brief, the timer is loaded with a value TMR_LOAD and configured to automatically reload

on each expiration. The interrupt handler keeps track of the number of expirations and after

three expirations performs the required steps, otherwise it simply increments the variable

storing the number of expirations.

(o) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the

Menu bar.

(p) Once the development board LED indicating successful programming lights up, select

interrupt_counter in Project Explorer. Right-click and select Run As > Launch on Hardware

(GDB).

Note that the counter will increment by 1 when timer expires three times. The buttons still

operate as in the previous exercise.

This completes this tutorial where systems utilising both single and multiple interrupt

sources have been created and tested.
65Next Steps in Zynq SoC Design www.zynqbook.com

Exercise 2D: Adding a Further Interrupt Source
66 Next Steps in Zynq SoC Designwww.zynqbook.com

The Zynq Book Tutorials 3

Designing With Vivado HLS

v1.4, June 2015
67

Revision History

Date Version Changes

30/10/2013 1.0 First release for Vivado Design Suite version 2013.2

28/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4

06/5/2014 1.2 Updated for changes in Vivado Design Suite version 2014.1

09/04/2015 1.3 Updated for changes in Vivado Design Suite Version 2014.4

30/04/2015 1.3.1 Updated to include Zybo development board for Vivado
Design Suite version 2014.4

19/06/2015 1.4 Updated for changes in Vivado Design Suite Version 2015.1
68 Designing With Vivado HLSwww.zynqbook.com

Introduction
This tutorial presents an introduction to High Level Synthesis using the Vivado™ HLS environment. The
creation of projects manually through the GUI, and automatically through scripting will be covered. The
process of simulating, synthesising and analysing a Vivado HLS design will then be explored, with design
optimisation and solution comparison along the way.

The tutorial is split into three exercises, and is organised as follows:

Exercise 3A — This exercise concerns the creation of projects using both the Vivado HLS GUI and use of
Tcl scripting. It details the inclusion of relevant source and test files and generation of a project for use in the
following exercise.

Exercise 3B — This exercise involves design optimization of a matrix multiplication function through the
use of various directives. It presents the Vivado HLS design environment and method of synthesis and
analysis of project solutions.

Exercise 3C — Finally, a more detailed look at how Vivado HLS synthesises interfaces is investigated.
69Designing With Vivado HLS www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
Creating Projects in Vivado HLS

In this exercise we will present the creation of Vivado HLS projects using both the Vivado HLS GUI

and the use of Tcl scripting to expedite the process.

(a) Before we begin it is necessary to copy the files from C:\Zynq_Book\sources\hls to a new

directory, C:\Zynq_Book\HLS.

(b) Launch the Vivado HLS GUI by navigating to Start > All Programs > Xilinx Design Tools >

Vivado 2015.1 > Vivado HLS > Vivado HLS 2015.1

(c) When the Vivado HLS GUI loads, you will be presented with the Welcome screen as in Figure

3.1.

(d) Select the option to Create New Project in Figure 3.1

(e) At the Project Name dialogue, enter matrix_mult_prj as the Project name and

C:\Zynq_Book\HLS\tut3A as Project location.

Click Next.

Exercise 3A

Figure 3.1: Vivado HLS welcome screen
70 Designing With Vivado HLSwww.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
(f) You will now be prompted to add or remove source files for the project. All C-based source

files for this tutorial have been created in advance, as we seek to guide through the design

flow rather than the programming itself. Click Add Files... and navigate to

C:\Zynq_Book\HLS\tut3A

Select the files matrix_mult.cpp and matrix_mult.h (hold down control to select multiple

files) and click Open. Set the top function to matrix_mult as in Figure 3.2.

Click Next.

(g) You will now be prompted to add a testbench file for design testing. Once more, click Add

Files... and navigate to the previous directory this time adding the file matrix_mult_test.cpp

and clicking Next.

The next step is configuring a solution for a specific FPGA technology. In this case, leave the

solution name and ensure the clock period is set to 5 as shown in Figure 3.3.

Figure 3.2: Adding files to a Vivado HLS project
71Designing With Vivado HLS www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
Since we are using the ZedBoard with the Zynq-7020 chip click, in the part selection

panel.

In the Select section, click Boards and then filter the board parts using the filter drop down

menus as in Figure 3.4. Select ZedBoard Zynq Evaluation and Development Kit and click OK.

Click Finish.

Figure 3.3: Solution Configuration Window

Zed

Figure 3.4: Zedboard device selection dialogue
72 Designing With Vivado HLSwww.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
Since we are using the Zybo with the Zynq-7010 chip click, in the part selection panel.

In the Select section click Parts and then filter the board parts using the filter drop down

menus, as shown in Figure 3.5. The required part can be confirmed by inspecting the Zynq

chip on the Zybo development board. The Z7010 Zynq chip with a clg400 package should

be selected. Click OK.

Click Finish.

(h) The project will be generated and the workspace will open in Synthesis mode for the

generated project and solution as in Figure 3.6.

Expanding the Source and Test Bench sections in the Explorer tab on the left side shows the

inclusion of the source and test files from the previous steps. Double clicking on these files

opens them in the editor view for examination and editing.

The project consists of a matrix multiplier, which multiplies two matrices inA and inB to

produce the output prod. The testbench performs the multiplication of two known matrices

and checks the value of prod against expected values.

Zybo

Figure 3.5: Zybo Part selection dialogue

Resume
73Designing With Vivado HLS www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
While the process of getting to this stage of HLS development is relatively straightforward, it

can be quite repetitive and so can be facilitated by use of Tcl scripting. This automates the

process of project naming and adding files. As such, we will now demonstrate the creation of

the same project using the aforementioned scripting approach.

(i) First, close the Vivado HLS GUI. We will now open the Vivado HLS Command Prompt.

Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools

> Vivado 2015.1 > Vivado HLS > Vivado HLS 2015.1 Command Prompt.

Figure 3.6: Synthesis view in the workspace

Figure 3.7: Vivado HLS command prompt
74 Designing With Vivado HLSwww.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
(j) It is observed that the default directory for commands is the install directory of Vivado HLS,

as in Figure 3.7. To change this to the working directory for this tutorial, use the following

commands, followed by pressing the Enter key.

• cd.. — This is a change directory command which moves up a

level in the directory. Repeat this until you have reached the level of the C: drive.

• cd Zynq_Book — This changes directory to the Zynq_Book folder.

• cd HLS — This changes directory to Zynq_Book/HLS.

• cd tut3A — This changes directory to Zynq_Book/HLS/tut3A.

The command prompt should now be in the working directory C:\Zynq_Book\HLS\tut3A. This

folder contains the source and test files for a project, and also the Tcl script required to build the

project, run_hls_zed.tcl and run_hls_zybo.tcl

(k) With the correct working directory and the required files present in that directory, we can

now build the project. This is achieved through simply running the Tcl script using the

command:

vivado_hls -f run_hls_zed.tcl

vivado_hls -f run_hls_zybo.tcl

This will begin the process of creating the project and adding source and test bench files. A HLS

solution is then created before configuring the project for the target device. Finally a C simulation

is run which utilises the test bench to ensure the project operates correctly.

The testbench performs identical multiplications using the HLS hardware solution and software,

and compares the results. If these results are identical, a “Test passed!” message is displayed:

(l) To open the project in the Vivado HLS GUI enter the following command:

vivado_hls -p matrix_mult_prj

Zed

Zybo

Resume
75Designing With Vivado HLS www.zynqbook.com

Exercise 3A: Creating Projects in Vivado HLS
And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

Using the project generated in the previous exercise, we will now investigate the process of design
optimisation in Vivado HLS. This will also provide an insight into the flow from project creation to C
synthesis and C/RTL cosimulation. We will also discuss the use of the Analysis perspective in analysing a
HLS solution.
76 Designing With Vivado HLSwww.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Design Optimisation in Vivado HLS
(a) You should already have the GUI open from the previous exercise, but if you don’t, open the

project matrix_mult_prj in the directory C:\Zynq_Book\HLS\tut3A.

(b) Expand the tabs for Source and Test Bench in the Explorer tab of the Synthesis view. As

before, this shows that the source and test files have been successfully added to the project.

Double clicking on each of these will open them in the editor allowing the code to be

inspected and altered as required.

matrix_mult.cpp contains code that performs the multiplication of two matrices through

use of iterative loops that run through the rows and columns of the matrices to calculate the

product.

matrix_mult.h contains definitions and the prototype function for the matrix multiplication.

matrix_mult_test.cpp is the test bench file which calculates the product of two given

matrices using both the HLS hardware solution and software, comparing to two to ensure

successful operation.

(c) Click the Run C Simulation button in the toolbar to run a C simulation of the solution.

Leave the options as default (no boxes checked, no input arguments) and click OK. Upon

completion of the simulation, the “Test passed!” message will be displayed in the console in

the bottom of the screen as in Figure 3.8.

(d) The next step is to synthesise the C++ code using HLS. Click the C Synthesis button in

the toolbar. Vivado HLS will begin the process of converting the C++ code into an RTL model

with associated VHDL/Verilog/SystemC code. The console details the steps performed in

achieving this.

Exercise 3B

Figure 3.8: Vivado HLS console detailing successful testing
77Designing With Vivado HLS www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Upon completion, a Synthesis Report will open automatically. This details various aspects of

the synthesised design, such as information concerning timing and latency and FPGA

resource utilisation estimates. (You may require to expand sub-sections to see results.)

The synthesised design has an interval of 687 clock cycles. Each input array contains 25

elements (as it uses 5x5 matrices) and so this suggests roughly 27 clock cycles per input read.

We can now run a C/RTL cosimulation to ensure that the synthesised RTL behaves exactly the

same as the C++ code under test.

Click the Run C/RTL Cosimulation button . For the RTL selection, ensure VHDL is

selected and click OK. Cosimulation will now begin, with the RTL system being generated

using VHDL. This process may take a short while to complete but progress can be viewed in

the console. Upon completion, the Cosimulation Report will be opened as in Figure 3.10

Figure 3.9: Synthesis report for the matrix multiplier, solution1

Figure 3.10: Cosimulation report for the matrix multiplier, solution
78 Designing With Vivado HLSwww.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Note the “Pass” message of Figure 3.10 indicating that the RTL behaves the same as the C++

source code.

(e) Create a new solution for the design by either clicking the New Solution button in the

toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for

solution2.

(f) Double click on matrix_mult.cpp in the Source section of the Explorer tab to ensure the code

is visible in the workspace. We will now insert a directive which will pipeline the nested loops

of the matrix multiplication code. This will perform loop flattening, removing the need for

loop transitions.

Open the Directives tab to the right of the workspace. Click on Product and you will observe

the associated portion of code highlighted in the editor, in this instance the multiplication of

array elements to produce the product elements of the resulting matrix. Right click on

Product and select Insert Directive:.

This will open the Directives Editor. Use the type drop-down menu to select the option

PIPELINE. Click OK to accept the default options. The directives tab should now resemble

Figure 3.11.

Figure 3.11: Pipelining nested loops in HLS
79Designing With Vivado HLS www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(g) Click the C Synthesis button to synthesise the RTL design. The console yields some

information about the process of flattening the Row loop. It also explains that the default

Initiation Interval (II) target of 1 could not be met for the Product loop. This is due to loop

dependency.

From the synthesis report shown in Figure 3.12 it is observed that the top level loop, Row_Col

has not been pipelined as loop Col was not flattened. It is also observed an II of 2 was achieved

despite the target of 1.

(h) Open the Analysis perspective by clicking on or Window > Analysis

Perspective. This will also open the Performance view showing how the various operations

within the code are scheduled as clock cycles.

(i) Expand the loops Row_Col and Product by clicking on them to obtain the view shown in

Figure 3.13.

Figure 3.12: Synthesis report for the matrix multiplier, solution2
80 Designing With Vivado HLSwww.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Note that the highlighted write operation occurs in state C3, node_33(write). Right clicking on

this cell and selecting Goto Source will highlight the associated line of code in the source file.

This is a write operation initialised as a write to a port in the RTL which occurs before any

operations in the loop, Product, can be executed. This prevents the flattening of loop Product

in to Row_Col.

Furthermore, the inability to meet the target of Initiation Interval (II) = 1 can be explained by

considering consecutive iterations of the loop.

To show the console go to Window > Show View > Console. The console reveals the

following message (you may need to scroll to find this message):

@W [SCHED-68] Unable to enforce a carried dependency constraint (II =
1, distance = 1) between ‘store’ operation (matrix_mult.cpp:16) of
variable ‘tmp_8’ on array ‘prod’ and ‘load’ operation (‘prod_load’,
matrix_mult.cpp16) on array ‘prod’.

Figure 3.13: Performance view for solution2
81Designing With Vivado HLS www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
There exists a dependency between iterations of the operation at line 16 of the source code,

which is the operation within the Product loop.

prod[i][j] += a[i][k] * b[k][j];

Due to the presence of the += operator, this line of code contains a read from array prod (the

aforementioned load operation) and a write to array prod (a store operation). With an II of 1, a

succeeding Product loop iteration would occur one clock cycle after the initiation of the first

iteration. This is visualised in Figure 3.14 by pasting consecutive copies of the matrix multiplier

operations, one above the other. With II set to 1, the highlighted overlap is observed. Arrays are

mapped to BRAM by default, and since this overlap requires a read and a write operation to be

performed on the same clock cycle, this is simply not possible as both operations cannot occur

on the BRAM at the same time. Therefore, setting the II to 2 allows the write operation to be

completed before the read operation of the next loop iteration begins.

Figure 3.14: Consecutive iterations of Product loop with II = 1

OVERLAP

Iteration k = 0

Iteration k = 1Initiation Interval (II) = 1
82 Designing With Vivado HLSwww.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(j) Return to the Default Synthesis perspective by selecting Window > Synthesis Perspective.

Click Yes if a dialogue window appears.

We will now create a new solution which pipelines the Col loop, unrolling the Product loop to

eliminate inter-iteration dependency but at the cost of increased operators and hence

hardware cost.

(k) Create a new solution for the design by either clicking the New Solution button in the

toolbar or the menu option Project > New Solution. From the drop-down menus, ensure

solution1 is selected, as this contains no existing directives or constraints.

Click Finish to create the solution.

(l) Ensure the source code matrix_mult.cpp is visible in the editor. In the Directives tab, right-

click on loop Col and select Insert Directive. From the drop-down menu, select directive type

PIPELINE, ensure (II = 1) and click OK. The directives tab should now resemble Figure 3.15.

(m) Click the C Synthesis button to synthesise the RTL design. Observing the Console will show

that while Product was unrolled and loop Row was flattened. The II target of 1 could not be

met for loop Row_Col, this time due to limitations in the resources. (You may need to scroll to

locate this message).

@W [SCHED-69] Unable to schedule ‘load’ operation (‘b_load_4’,
matrix_mult.cpp:16) on array ‘b’ due to limited memory ports.

(n) Open the Analysis perspective by clicking on . This will open the Performance

view. Switch to the Resource view by clicking the tab at the bottom of the screen.

Figure 3.15: Pipelining Column Loop in HLS
83Designing With Vivado HLS www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(o) Expand the Memory Ports to view resource sharing on the memory within the system. Your

view should look similar to Figure 3.16.

Figure 3.16 shows the operations per resource on each clock cycle. In actual fact, the 2 cycle read

operation on b beginning in C3 overlaps with those in C4 so only a single cycle is visible. There

are instances of both a and b being subjected to 3 read operations at once, which you will

remember is not possible for dual-port BRAM. It is therefore necessary to partition these arrays

into smaller sections, allowing modification of the array without altering the source code.

(p) Return to the Synthesis perspective by clicking on .

Create a new solution for the design by either clicking the New Solution button in the

toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for

solution4. Note the directives will be copied from solution3.

For this solution, we will reshape the input arrays using directives. The Product loop is

accessed via loop index k, therefore arrays a and b should be partitioned along their k

dimension. Inspecting line 16 of matrix_mult.cpp it is observed that for a[i][k] this is

dimension 2 and for b[k][j] dimension 1.

(q) Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.

Right-click on variable a and select Insert Directive. Ensure the directive is configured as in

Figure 3.17, with ARRAY_RESHAPE selected as directive type and dimension specified as 2.

Figure 3.16: Resource sharing on memory ports of solution3
84 Designing With Vivado HLSwww.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(r) Repeat for array b, this time ensuring dimension is set to 1.

(s) Click the C Synthesis button to synthesise the RTL design. The synthesis report will open,

showing that the target II of 1 has now been met.

The top-level of the design takes 34 clock cycles for completion, with the Row_Col loop

outputting a sample after an iteration latency of 9. A sample is then read in every cycle (due

to an II of 1), and after 25 counts all samples have been read in. The 34 clock cycles of this

design is therefore justified by the 25 counts plus the latency of 9, as 25 + 9 = 34.

The function then proceeds to calculate the next set of data.

Figure 3.17: Directive configurations for reshaping array a

Figure 3.18: Synthesis report for solution4
85Designing With Vivado HLS www.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
(t) The final optimisation in this exercise is to pipeline the function, rather than the loops within

that function for comparison. Create a new solution for the design by either clicking the New

Solution button in the toolbar or the menu option Project > New Solution. Click Finish

to accept the defaults for solution5.

(u) Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.

First, remove the previously inserted pipeline directive on loop Col. Right-click on the

directive and select Remove Directive. If a dialogue window similar to that in Figure 3.19

appears, click No.

(v) Right-click on the top level function matrix_mult and select Insert Directive. Select PIPELINE as

the directive type and click OK.

(w) Click the C Synthesis button to synthesise the RTL design.

Vivado HLS provides a tool for comparing synthesis reports. Click the button or the

menu option Project > Compare Reports.

Ensure solution4 and solution5 are added as in Figure 3.20. Click OK.

Figure 3.19: Node re-labelling dialogue window

Figure 3.20: Solution selection for comparison
86 Designing With Vivado HLSwww.zynqbook.com

Exercise 3B: Design Optimisation in Vivado HLS
Figure 3.21 shows the comparison of

synthesis report for solution4 (with loop

pipelining) and solution5 (with top level

function pipelining). It is observed that

pipelining the top level function results in

a design which reaches completion in

fewer clocks, requiring only 13 clock cycles

to begin a new transaction, rather than 35

for pipelining the loop.

However, this comes at the cost of

increased hardware utilisation due to

unrolling of all loops within the design. A

trade-off is therefore necessary between

system performance and the hardware

utilisation of the design, and it is possible

that a partially unrolled design may meet

the performance requirements at a reduced hardware cost.

The Zedboard, containing the Z-7020 Zynq chip, accommodates 220 DSP48E slices which

makes this device very suitable for implementing this hardware design. However the Zybo,

which contains the Z-7010 Zynq chip, only consists of 80 DSP48E slices. Solution5 requires

125 DSP48E slices indicating that pipelining the top level function of the hardware design

has increased device utilisation to the extent that the Zybo Zynq chip can no longer achieve

full implementation. It is apparent that solution4 would be suitable with reduced resource

utilisation and increased latency.

(x) This completes the exercise. Close the Vivado HLS GUI.

We will now briefly explore the concept of interface synthesis in Vivado HLS, using the matrix multiplier
function of the previous two exercises.

Figure 3.21: Comparison of solution4 and solution5
87Designing With Vivado HLS www.zynqbook.com

Exercise 3C: Interface Synthesis
Interface Synthesis
(a) Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools

> Vivado 2015.1> Vivado HLS > Vivado HLS 2015.1 Command Prompt.

(b) Change the working directory to C:\Zynq_Book\HLS\tut3C. This folder contains the source

and test files for a project, and also the Tcl script required to build the project, run_hls.tcl.

(c) Run the Tcl script using the command:

vivado_hls -f run_hls_zed.tcl

vivado_hls -f run_hls_zybo.tcl

(d) To open the project in the Vivado HLS GUI enter the following command:

vivado_hls -p matrix_mult_prj

And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

(e) Open the source file

matrix_mult.cpp from the

Source section of the

Explorer tab and click

the C Synthesis button to

synthesise the RTL

design. When the

synthesis report opens,

scroll to the Interface

section.

Note that the input

arrays a and b, and the

resultant product array

prod have been

implemented using the

Exercise 3C

Zed

Zybo

Resume

Figure 3.22: Interface summary for solution1
88 Designing With Vivado HLSwww.zynqbook.com

Exercise 3C: Interface Synthesis
ap_memory protocol. This is inferred from the C++ source code, as the array type corresponds

with the structure of memory.

Input arrays a and b are both 8 -bit signals on ports a_q0 and b_q0. The output array, prod is

a 16-bit signal on port prod_d0. Each signal has a corresponding 5-bit address port,

designated as a_address0, b_address0 and prod_address0.

The protocol also requires clock enable signals (a_ce0 and b_ce0), and a write enable

(prod_we0).

Since the design requires more than one clock cycle to complete and is therefore

synchronous, a clock and reset port have been synthesised as ap_clk and ap_rst, and both are

1-bit signals.

A block level control protocol with handshaking, ap_ctrl_hs, has also been implemented

(ap_start, ap_done, ap_idle and ap_ready).

• The ap_start input is asserted, prompting block operation. This produces three output

control signals indicating the stage of operation.

• ap_ready indicates that the block is ready for new inputs.

• ap_idle is an indication that data is currently processing data.

• ap_done indicates that output data has been processed and is available.

Recalling Exercise 3B, the arrays were partitioned to reduce each into several smaller sections

with expanded ports, control signals and implementation resources. This increased the

bandwidth. This directly influenced the interface synthesis through use of directives.

This concludes this introduction to the design flow of Vivado HLS. This tool will be used further in future
exercises, and synthesised RTL will be implemented as part of a larger functional model.
89Designing With Vivado HLS www.zynqbook.com

Exercise 3C: Interface Synthesis
90 Designing With Vivado HLSwww.zynqbook.com

The Zynq Book Tutorials 4

IP Creation

v1.4, June 2015
91

Revision History

Date Version Changes

22/10/2013 1.0 First release for Vivado Design Suite version 2013.3

28/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4

06/05/2014 1.2 Updated for changes in Vivado Design Suite version 2014.1

09/04/2015 1.3 Updated for changes in Vivado Design Suite version 2014.4

01/05/2015 1.3.1 Updated to include Zybo development board for Vivado
Design Suite version 2014.4

19/06/2015 1.4 Updated for changes in Vivado Design Suite Version 2015.1
92 IP Creationwww.zynqbook.com

Introduction
The exercises in this tutorial will guide you through the process of creating custom IP modules, that are
compatible with Vivado IP Integrator, from a variety of different sources. All created IP will be compatible
with the Xilinx supported AXI-Lite interface, and will be connected as slave devices when implemented in
Vivado IP Integrator.

All IP creation methods that are covered here coincide with those covered in the book:

• HDL

• MathWorks HDL Coder

• Xilinx Vivado HLS

The tutorial is split into three exercises, and is organised as follows:

Exercise 4A - In this exercise, HDL will be used to create a controller which will allow the LEDs on the Zynq
development board to be controlled by software running on the PS. The Create and Package IP Wizard will
be used to create an AXI-Lite interface wrapper which the LED control process and interface will be added
to. The IP packaging process will then be used to create an IP block which is compatible with IP Integrator.

Exercise 4B - HDL Coder, the MathWorks HDL generation tool, will be explored in this exercise. A Least
Mean Squares (LMS) adaptive filter will be created and tested in the Simulink workspace. The LMS design
will then be used to generate HDL code by invoking the HDL Coder Workflow Advisor, where the option
to generate a Xilinx IP Core will be selected. The various stages of the workflow will verify the design to
ensure that it is HDL Coder compliant and produce the HDL code in a format that is compatible with IP
Integrator. Note: You will require MATLAB, Simulink and HDL Coder in order to complete Exercise 4B.

Exercise 4C - In this final exercise, Vivado HLS will be used to create an IP core for a Numerically Controlled
Oscillator (NCO). An existing C-code algorithm will be simulated for testing, and run through the various
stages of synthesis in order to create an IP Integrator compatible IP core.
93IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
Creating IP in HDL

With Zynq devices comprising of both PS and PL parts, most IP that is created to run in PL should

be able to communicate with software running on the PS. This requires that IP should be

packaged with an interface that is compatible with the PS (in this case the AXI interface).

When creating IP in HDL, Vivado provides a set of AXI interface templates which can be created

and customised via the Create and Package IP Wizard. The wizard, as the name suggests, facilitates

two major functions: the creation of AXI4 IP peripherals; and the packaging of existing source files

into an IP package which is compatible with the IP Integrator tool.

In this exercise we will actually be making use of both of these features to firstly create an AXI4-

Lite IP template to which we will add functionality to allow the LEDs on the Zynq development

board to be controlled via a software application running on the Zynq PS. Once the functionality

has been added to the template, the source files will be packaged into an IP Integrator

compatible IP block which will be included in a simple Zynq processor system.

We will start by creating a new Vivado project.

(a) Launch Vivado by double-clicking on the Vivado desktop icon: , or by navigating to Start

> All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado 2015.1

(b) Select Create New Project from the Getting Started screen.

(c) The New Project dialogue will open. Click Next.

(d) At the Project Name dialogue, enter led_controller as the Project name and C:/Zynq_Book

as Project location.

Make sure that you select the option to Create project subdirectory. Ensure that all options

match Figure 4.1.

Click Next.

Exercise 4A

Figure 4.1: Vivado Project Name specification - led_controller
94 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
(e) Select RTL Project at the Project Type dialogue, and ensure that the option Do not specify

sources at this time is not selected:

Click Next.

(f) Select VHDL as the Target language in the Add Sources dialogue.

If existing sources, in the form of HDL or netlist files, were to be added to the project they

could be imported at this stage.

As we do not have any sources to add to the project, click Next.

(g) The Add Existing IP (optional) dialogue will open.

If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.

This is the stage were any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) The Default Part dialog will open. Here we will be selecting the Zynq part which we are

targeting.

Select Boards from the

Specify pane, ZedBoard

Zynq Evaluation and

Development Kit as the

Display Name, and finally

select the Board Rev which

you have. In Figure 4.2

version D of the ZedBoard

has been selected.

Click Next.
Figure 4.2: Zedboard Vivado Default Part dialogue

Zed
95IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
Ensure you have carried out the Zybo board part set-up procedure at the beginning of

Exercise 1A. Select Boards from the Select dialogue click Zybo from the Display Name list and

All from the Board Rev list, as shown in Figure 4.3. Select the appropriate revision for your

board (in this case Rev. B.3 has been selected).

Click Next.

(j) Review the New Project Summary dialogue, and click Finish to create the project.

With the new project created, we can begin the process of creating our HDL-based IP.

(k) From the menu bar, select Tools > Create and Package IP..., as in Figure 4.4, to launch the

Create and Package IP Wizard.

(l) The Create and Package IP Wizard dialogue will launch, as shown in Figure 4.5.

Zybo

Figure 4.3: Zybo Default Part Dialogue Options

Resume

Figure 4.4: Create and Package IP menu bar selection
96 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
Click Next.

The Choose Create Peripheral or Package IP dialogue (Figure 4.6) is where we specify whether to

create a new peripheral template file or to package existing source files into an IP core.

In our case we want to create a new IP template.

(m) Select Create new AXI peripheral, as shown in Figure 4.6.

Figure 4.5: Create and Package IP Wizard dialogue

Figure 4.6: Choose Create or Package IP dialogue
97IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
Click Next.

The Peripheral Details dialogue allows you to specify the Vendor, Library, Name and Version

(VLNV) information, as well as other details, for the new peripheral, leaving the IP Location as the

default.

(n) Fill in the details as shown in Figure 4.7.

Click Next.

The Add Interface dialogue allows you to specify the AXI4 interface(s) that will be present in your

custom peripheral. Here you can specify:

• Number of interfaces

• Interface type (AXI-Lite, AXI-Stream or AXI-Full)

• Interface mode (slave or master)

• Interface data width

Features specific to individual interface types will also be available when the corresponding type

is selected.

As our peripheral is a simple controller for the LEDs which only requires single values to be

transferred to it, an AXI-Lite slave interface is sufficient. Only one memory mapped register is

Figure 4.7: Peripheral Details dialogue
98 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
required for our simple controller, but as the minimum number that can be specified in the

dialogue is 4, we will choose that.

(o) Specify the Add Interface dialogue as shown in Figure 4.8.

Click Next.

(p) Review the information in the Create Peripheral dialogue, which details the output files which

will be created.

Select the option to Edit IP. This will create the IP peripheral files and create a new Vivado

project where the functionality of the peripheral can be modified in the source HDL code, and

then packaged.

Click Finish to close the Wizard and create the peripheral template.

A new Vivado project, named edit_led_controller_v1_0, will open.

In the Sources pane, you should see two HDL source files (you may need to expand the file

selection):

Figure 4.8: Add Interface dialogue
99IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
As we specified our target language as VHDL in Step (f) earlier, the template files have been

generated in VHDL. Had we specified Verilog as the target language, Verilog source files would

have been created.

The two source files are:

• led_controller_v1_0.vhd — This file instantiates all AXI-Lite interfaces. In this case, only

one interface is present.

• led_controller_v1_0_S00_AXI.vhd — This file contains the AXI4-Lite interface

functionality which handles the interactions between the peripheral in the PL and the

software running on the PS.

The IP Packager pane will also be open in the Workspace:

The information that we specified about our peripheral in Step (n) will be visible. The Vendor

parameter will be dependant on your computers network domain and can be changed.

We can now add the functionality to our led_controller peripheral. We will be adding a new

output port to the peripheral template to allow it to connect to the LED pins on the Zynq device,

as well as assigning the value received from the Zynq PS to the new output port.
100 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
(q) Open led_controller_v1_0_S00_AXI.vhd by double-clicking on it in the Sources pane. The

file will open in the Workspace.

Scroll down until you see the following comment in the entity port declaration:

Add the following port definition directly below the comment:

This creates a new output port with a width of 8-bits (a single bit to represent each of the LEDs

on the ZedBoard).

Scroll to the bottom of the file. You should see the following comment:

and add the following port/signal assignment:

This assigns the value that is received from the Zynq PS (stored in the signal slv_reg0) to the

output port that we created in the previous step.

Scroll down until you see the following comment in the entity port declaration:

Add the following port definition directly below the comment:

This creates a new output port with a width of 4-bits (a single bit to represent each of the LEDs

on the Zybo).

Scroll to the bottom of the file. You should see the following comment:

and add the following port/signal assignment:

This assigns the value that is received from the Zynq PS (stored in the signal slv_reg0) to the

Zed

-- Users to add ports here

LEDs_out : out std_logic_vector(7 downto 0);

-- Add user logic here

LEDs_out <= slv_reg0(7 downto 0);

Zybo

-- Users to add ports here

LEDs_out : out std_logic_vector(3 downto 0);

-- Add user logic here

LEDs_out <= slv_reg0(3 downto 0);
101IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
output port that we created in the previous step.

(r) Save the file by selecting File > Save File from the Menu Bar, or using the keyboard shortcut

Ctrl+S.

(s) Open led_controller_v1_0.vhd by double-clicking on it in the Sources pane. The file will

open in the Workspace.

We must once again create a new output port to the top-level source file, and map it to the

equivalent port that we created in the AXI4-Lite interface file in the previous steps.

Scroll down until you see the following comment in the entity port declaration:

and add the following port definition directly below the comment:

As we added a new port to the AXI4-Lite interface file, we must also add it to the component

declaration in the top-level file.

Scroll down until you see the comment:

A few lines further down you will see the component port declaration:

Inside the port declaration (below the “port (“ line), add the following output port

definition:

Scroll down until you see the following comment in the entity port declaration:

and add the following port definition directly below the comment:

Resume

Zed

-- Users to add ports here

LEDs_out : out std_logic_vector(7 downto 0);

-- component declaration

port (

LEDs_out : out std_logic_vector(7 downto 0);

Zybo

-- Users to add ports here

LEDs_out : out std_logic_vector(3 downto 0);
102 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
As we added a new port to the AXI4-Lite interface file, we must also add it to the component

declaration in the top-level file.

Scroll down until you see the comment:

A few lines further down you will see the component port declaration:

Inside the port declaration (below the “port (“ line), add the following output port

definition:

Finally, we must add a port mapping between the LED output ports of the top-level file and the

AXI4-Lite interface file.

(t) Scroll down until you see the comment:

A few lines further down you will see the component port map:

Inside the component port map (below “port map (“ line), add the following port map:

(u) Save the file.

Now that we have made the necessary modifications to the peripheral source files, we must

repackage the IP to merge the changes.

(v) Return to IP Packager by selecting the Package IP - led_controller tab in the Workspace:

-- component declaration

port (

LEDs_out : out std_logic_vector(3 downto 0);

Resume

-- Instantiation of Axi Bus Interface S00_AXI

port map (

LEDs_out => LEDs_out,
103IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
IP Packager will detect the changes to the source files, and the areas which need refreshed will be

highlighted with the following icon: . You should see that the following two areas of interest

need refreshed:

(w) Select Customization Parameters in the IP Packager pane.

You should see the following information message at the top of the pane:

Click Merge changes from Customization Parameters Wizard

This will update the IP Packager information to reflect the changes made in the HDL source

files.

NOTE: This process updates IP Packager information for all areas. You should see that the

area of Ports and Interfaces no longer needs updated, and the icon has now been

removed.

To verify that IP Packager has updated the Ports and Interfaces area, we will open it and check.

(x) Select Ports and Interfaces from the IP Packager pane.

You should notice that the LEDs_out port that we added to the source files has been added

to the IP Ports pane and has a length of 8:

You should notice that the LEDs_out port that we added to the source files has been added

to the IP Ports pane and has a length of 4:

The final step in creating our new IP peripheral, is to package the IP.

(y) Select Review and Package form the IP Packager pane.

Zed

Zybo

Resume
104 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
(z) In the After Packaging panel, click edit packaging settings at the bottom:

(aa) In the Automatic Behaviour panel, enable the option to Create archive of IP, Close IP

Packager window and to Add IP to the IP Catalog of the Current Project. You may Delete

project after packaging if you wish (does not have an impact on the remainder of this

tutorial).

This makes a ZIP file archive of the packaged IP and close IP Packager once finished.

(ab)Click OK to apply the setting.

(ac) Review the information provided in the Review and Package window, and click Re-Package

IP.

(ad)A dialogue box will appear asking if you want to close the project, click Yes.

(ae) The changes made to the IP peripheral will be included in the repackaged IP, and the Vivado

project will close.

We will now return to our original Vivado project, and create a simple Zynq processor block

design to check that the functionality of our LED controller peripheral.

To start, we will create a new Block Design and add the IP peripheral which we just created to the

design.

(af) In the Flow Navigator window, select Create Block Design from the IP Integrator section.

Enter led_test_system in the Design name box, and click OK to create the blank design.
105IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
(ag)Right-click anywhere in the blank canvas, and select Add IP. Alternatively, use the keyboard

shortcut Ctrl+I. This will bring up to pop-up IP Catalog window.

Enter led in the Search box, and double-click led_controller_v1.0 to add an instance of the

LED controller IP to the design.

An led_controller_v1_0 block will now be present in the block design, as shown in Figure 4.9.

The 8-bit LEDs_out port that we added to the peripheral is present on the right side of the block.

To enable the peripheral to connect to the LEDs on the ZedBoard, we must make the LEDs_out

port external. This allows the output port to be connected to specific physical pins on the Zynq

device, which are connected to the LEDs.

Hover the mouse pointer over the LEDs_out interface (the little black stub next to the

interface name) on the led_controller block until the cursor changes to a pencil. Right-click

and select Make External. Alternatively, select the interface and use the keyboard shortcut

Ctrl+T.

The block design should now resemble Figure 4.10.

An led_controller_v1_0 block will now be present in the block design, as shown in Figure

Zed

Figure 4.9: led_controller block

Figure 4.10: led_controller block with external port

Zybo
106 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
4.11. The 4-bit LEDs_out port that we added to the peripheral is present on the right side of

the block.

To enable the peripheral to connect to the LEDs on the Zybo, we must make the LEDs_out port

external. This allows the output port to be connected to specific physical pins on the Zynq device,

which are connected to the LEDs.

Hover the mouse pointer over the LEDs_out interface (the little black stub next to the

interface name) on the led_controller block until the cursor changes to a pencil. Right-click

and select Make External. Alternatively, select the interface and use the keyboard shortcut

Ctrl+T.

The block design should now resemble Figure 4.12.

The next step is to add a Zynq Processing System block so that the LED Controller can be

connected to it.

Add an instance of the Zynq7 Processing System, using the same procedure as in Step (ag).

The Designer Assistance message at the top of the canvas will appear:

Figure 4.11: led_controller block

Figure 4.12: led_controller block with external port

Resume
107IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
Click Run Block Automation.

An information message will appear. Ensure that Apply Board Preset is selected, and click OK.

This will make all necessary modifications to the Zynq processing system that relate to the board

preset and make required external connections.

We must now connect the LED Controller to the Zynq Processing System. This step can also be

carried out using Designer Assistance.

(ah)In the Designer Assistance message, click Run Connection Automation.

An information message will appear, select led_controller_0/S00_AXI and click OK.

This will add some additional blocks to the design which are required to connect the LED

Controller to the Zynq Processing System.

Our block design is now complete.

(ai) Validate the design by selecting Tools > Validate Design from the Menu Bar. Alternatively,

select the Validate Design button, , from the Main Toolbar, or use the keyboard shortcut

F6.

Dismiss the Validate Design message by clicking OK.

We can now generate the HDL files for the design.

(aj) In the Sources pane, right-click on the led_test_system block design and select Create HDL

Wrapper.

Select Let Vivado manage wrapper and auto-update and click OK.

This will create the top-level HDL file for the design.

We must now connect the LEDs_out port of the design to the correct pins on the Zynq device.

This is done through the specification of constraints in an XDC file.

(ak) In the Flow Navigator window, select Add Sources from the Project Manager section.

The Add Sources dialogue will open.

Select Add or Create Constraints, and click Next.

(al) Click the symbol and then click Create File... as shown in Figure 4.13.
108 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
The Create Constraints File dialogue will open.

Select XDC as the File type and enter led_constraints as the File name.

Click OK.

(am)Click Finish to create the file and close the dialogue.

(an)In the Sources tab, expand the Constraints entry and open the newly created XDC file by

double-clicking on led_constraints.xdc.

The file will open in the Workspace.

Add the following lines to the constraints file. Alternatively, they can be copied from the

source file available at C:\Zynq_Book\sources\zedboard\led_controller.

This connects each individual bit of the LEDs_out port to a specific pin on the Zynq device.

The specific pins are connected to the LEDs on the Zedboard.

Figure 4.13: Add or Create Constraints Dialogue Window

Zed
109IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
Add the following lines to the constraints file. Alternatively, they can be copied from the

source file available at C:\Zynq_Book\sources\zybo\led_controller:

This connects each individual bit of the LEDs_out port to a specific pin on the Zynq device.

The specific pins are connected to the LEDs on the Zybo.

(ao)Save the constraints file.

Our simple design is now complete. We can now generate a bitstream.

(ap)In Flow Navigator, select Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

set_property PACKAGE_PIN T22 [get_ports {LEDs_out[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[0]}]
set_property PACKAGE_PIN T21 [get_ports {LEDs_out[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[1]}]
set_property PACKAGE_PIN U22 [get_ports {LEDs_out[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[2]}]
set_property PACKAGE_PIN U21 [get_ports {LEDs_out[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[3]}]
set_property PACKAGE_PIN V22 [get_ports {LEDs_out[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[4]}]
set_property PACKAGE_PIN W22 [get_ports {LEDs_out[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[5]}]
set_property PACKAGE_PIN U19 [get_ports {LEDs_out[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[6]}]
set_property PACKAGE_PIN U14 [get_ports {LEDs_out[7]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[7]}]

Zybo

set_property PACKAGE_PIN M14 [get_ports {LEDs_out[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[0]}]
set_property PACKAGE_PIN M15 [get_ports {LEDs_out[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[1]}]
set_property PACKAGE_PIN G14 [get_ports {LEDs_out[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[2]}]
set_property PACKAGE_PIN D18 [get_ports {LEDs_out[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {LEDs_out[3]}]

Resume
110 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
A dialogue window may open requesting that you launch synthesis and implementation

before starting the Generate Bitstream process. If it does, click Yes to accept.

The combination of running the synthesis, implementation and bitstream generation

processes back-to-back may take a few minutes, depending on the power of your computer

system.

(aq)When bitstream generation is complete a dialogue window will open to inform you that the

process as been completed.

Select Open Implemented Design, and Click OK.

With the bitstream generation complete, the final step in Vivado is to export the design to the

SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the Zynq development board.

(ar) Select File > Export > Export Hardware... from the Menu Bar.

The Export Hardware for SDK dialogue window will open. Ensure that the option to Include

bitstream is selected, and Click OK.

(as) Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

The SDK will launch.

(at) Once the SDK has launched, create a new Application Project by selecting File > New >

Application Project from the Menu Bar.

In the New Project dialogue, enter LED_Controller_test as the Project name.

By default the option to create a new board support package will be selected.

Click Next.

(au)In the Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the peripheral in the previous stages of this exercise that

a set of software driver files were generated. We must now point the SDK to those driver files. This

is done by adding a new repository to the SDK project.

(av) Navigate to Xilinx Tools > Repositories in the Menu Bar.

In the Repositories Preferences window, click on New, as shown in Figure 4.14.
111IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
(aw)Browse to the directory:

C:\Zynq_Book\ip_repo\led_controller_1.0

as shown in Figure 4.15, and click OK.

(ax) Close the Repository Preferences window by clicking

OK.

Upon closing the preferences window, SDK will

automatically scan the repository and rebuild the project

to include the driver files.

We must now check that the newly imported driver has

been assigned to the LED Controller peripheral.

Figure 4.14: SDK Repository Peripherals window

Figure 4.15: led_controller repository
selection
112 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
(ay) The system.mss tab should be open in the Workspace. If it is not, open it by expanding

LED_Controller_test_bsp in Project Explorer and double-clicking on system.mss.

(az) At the top left of the system.mss tab, click Modify this BSP’s Settings.

The Board Support Package Settings window will open, as in Figure 4.16.

(ba)Select drivers from the left-hand menu. From the list of components in the Drivers pane,

identify led_controller_0 and ensure led_controller is selected from the drop-down menu

in the Driver column, as shown in Figure 4.17.

Figure 4.16: Board Support Package Settings window
113IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
Click OK.

The project will now rebuild.

We can now create a simple C application to control the LEDs. In this instance we will be

importing a pre-written source file.

(bb)In Project Explorer, expand LED_Controller_test and right-click on src. Select Import from

the drop-down menu.

In the Import window, expand General and double-click on File System.

Click Browse in the top right corner, and navigate to

C:\Zynq_Book\sources\zedboard\led_controller. Click OK.

In the right-hand panel, select led_controller_test_tut_4A.c and click Finish.

Click Browse in the top right corner, and navigate to

C:\Zynq_Book\sources\zybo\led_controller. Click OK.

In the right-hand panel, select led_controller_test_tut_4A.c and click Finish.

The project will rebuild to include the new source file.

Open led_controller_test_tut_4A.c and examine the functionality.

Before launching the application on the Zynq development board, we must program the Zynq

PL and create a new terminal connection.

Figure 4.17: LED Controller driver selection

Zed

Zybo

Resume
114 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
(bc)From the Menu Bar, select Xilinx Tools > Program FPGA.

The Bitstream entry should already be populated with the corresponding bitstream that we

exported from Vivado earlier.

Click Program, to program the Zynq PL.

NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard

will turn blue. Similarly the DONE LED on the Zybo will turn green.

(bd)Select the Terminal tab from the Console window at the bottom of the workspace, as in

Figure 4.18.

(be)Click the Connect icon (as highlighted in Figure 4.18).

(bf) The Terminal Settings window will open. Configure

the settings as specified in Figure 4.19.

NOTE: The value of the Port entry will vary depending

on which the USB UART cable is connected to.

In order to determine this value on a Windows

system, open the Device Manager and identify the

COM port (may be named ‘USB Serial Port’).

(bg)Click OK to initiate the new Terminal connection.

Figure 4.18: SDK Terminal tab

Connect icon Terminal tab

Figure 4.19: Terminal Settings
115IP Creation www.zynqbook.com

Exercise 4A: Creating IP in HDL
Now that the Zynq PL is programmed, and the Terminal connection has been created, we can

program the Zynq PS with our software application.

(bh)In Project Explorer, right-click on LED_Controller_test and select Run As > Launch on

Hardware (GDB), as shown in Figure 4.20.

Figure 4.20: Run Application on hardware
116 IP Creationwww.zynqbook.com

Exercise 4A: Creating IP in HDL
(bi) Switch to the Terminal tab of the Console window, and confirm that the LED value is being

output, as in Figure 4.21.

You should also see the LEDs on the development board displaying the corresponding LED

values.

This concludes this exercise on designing Zynq IP in HDL. You should now be familiar with:

• Creating AXI interface templates with the Create and Package IP Wizard.

• Adding functionality to HDL IP peripherals in Vivado and IP Packager.

• How to connect packaged IP to a Zynq Processing System in IP Integrator.

• Creating software applications to control the HDL IP using the generated C software

drivers, and executing them on a Zynq development board

Figure 4.21: Terminal tab displaying LED values
117IP Creation www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
Creating IP in MathWorks HDL Coder

In this exercise, we will be creating an IP core which will perform the function of an LMS noise

cancellation filter. MathWorks HDL Coder will be used to transform an existing Simulink block-

based model into an RTL description which will be packaged for use in the Vivado IP Catalog. We

will start by opening the Simulink model in MATLAB.

Before starting this exercise, you should copy some source files into a new working directory.

(a) In Windows Explorer, navigate to C:\Zynq_Book\sources\hdl_coder_lms and copy the

contents of the directory to a new directory called C:\Zynq_Book\hdl_coder_lms.

(b) Launch MATLAB by navigating to Start > All Programs > MATLAB > R2015a > MATLAB

R2015a

MATLAB will open and you will see the main workspace, as shown in Figure 4.22 (or a

variation thereof).

Note: This workbook uses version R2015a of MATLAB. If you have a different MATLAB version

you may need to replace your own version (i.e. R2014a/R2014b/R2013a/R2013b) with 2015a.

Exercise 4B

Figure 4.22: MATLAB workspace environment
118 IP Creationwww.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(c) If your MATLAB HDL Toolpath has already been set-up, move on to Step (d), otherwise carry-

out the following procedure.

• Download and install Xilinx ISE 14.7 from the Xilinx website or from the following link:

http://www.xilinx.com/products/design-tools/ise-design-suite.html

• Using Windows Explorer locate the Xilinx ISE Application within the Xilinx ISE 14.7

installation directory named ise.exe. Typically, the application can be found at the

following address if installed to the C Drive:

C:\Xilinx\14.7\ISE_DS\ISE\bin\nt\ise.exe

• Copy the address to the clipboard and open the MATLAB workspace shown previously in

Figure 4.22.

• In the Command Window enter the following function:

Where the fourth parameter (application address) is the installation directory previously

copied to the clipboard.

• Successfully setting up the HDL Toolpath will result in the following information being

displayed:

• HDL Coder can now be used to synthesise HDL code for Xilinx Hardware Platforms.

(d) Enter C:\Zynq_Book\hdl_coder_lms as the working directory, as highlighted in Figure 4.23.

hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath',
'C:\Xilinx\14.7\ISE_DS\ISE\bin\nt\ise.exe')

Figure 4.23: Setting the MATLAB working directory
119IP Creation www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
In the Current Folder pane, you should also see four files:

• original_speech.wav — A short audio clip of speech.

• setup.m — Performs setup commands to import the audio samples into the MatLab

workspace and set the system sample rate accordingly.

• lms.slx — A simulink model which implements and LMS noise cancellation process.

• playback.m —Can be used to verify the LMS filtering process via audio playback of the

various stages.

The setup commands in setup.m are automatically called when the Simulink simulation is

initialised.

(e) Open the LMS Simulink model by double-clicking on lms.slx in Current Folder pane.

The model should open and you should see the LMS system, as shown in Figure 4.24.

The model features two sources:

• a Sine Wave block which generates tonal noise.

• A From Workspace block which imports the audio samples from the MATLAB

Workspace.

The tonal noise is then added to the audio samples to create a corrupted audio signal.

Figure 4.24: LMS model in Simulink
120 IP Creationwww.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
In order to generate HDL code for the Simulink LMS model using HDL Coder, the inputs to the

system must be in fixed-point numerical format. Two Data Type Conversion blocks are used to

convert the corrupt audio signal and the tonal noise signal to fixed-point format. The fixed-point

signals are then input to an LMS subsystem, which we will explore in the next step.

At the output of the LMS subsystem, the error signal, e(k), is input to a scope along with the

corrupt audio and tonal noise inputs, for visual inspection of the signals. Two To Workspace

blocks are also present to allow the LMS output and the corrupt audio signals to be output to the

MatLab workspace for audio playback.

(f) Drill down into the LMS subsystem block by double-clicking on it. You will see the system in

Figure 4.25.

It features a single LMS Filter block. As we are not interested in the Output signal, it is

unconnected. Further reading about the functionality of an LMS Filter can be found by right

clicking the LMS Filter block and selecting Help as shown below:

Figure 4.25: LMS subsystem
121IP Creation www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(g) Open the LMS Filter Block Parameters by double-clicking on the LMS Filter block.

Take a moment to explore the parameters. You should be able to determine that there are 16

adaptive filter coefficients and a step size of 0.125.

(h) Close the Parameters window, and return to the main Simulink model by clicking the Up To

Parent button, .

We will be generating HDL code for the LMS subsystem only.

Right-click on the LMS subsystem and select HDL Code > HDL Workflow Advisor.

The HDL Workflow Advisor window will open, as in Figure 4.26.

The HDL Workflow Advisor guides you through the steps required to generate RTL code for your

design.

Figure 4.26: HDL Workflow Advisor window
122 IP Creationwww.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(i) In the left-hand panel, expand Set Target and select 1.1. Set Target Device and Synthesis

Tool.

Here we specify the output format of the RTL and the target platform.

(j) In the Input Parameters pane, select IP Core Generation as the Target workflow, and Generic

Xilinx Platform as the Target platform

At this stage, additional part specification options will now be available. Target the

Zedboard by first confirming the required part by inspecting the Zynq chip on the board.

Enter the part details into HDL Coder as in Figure 4.27.

At this stage, additional part specification options will now be available. Target the Zybo by

first confirming the required part by inspecting the Zynq chip on the board. Enter the part

details into HDL Coder as in Figure 4.28.

Zed

Figure 4.27: ZedBoard HDL Workflow Advisor Input Parameters

Zybo
123IP Creation www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(k) Click Run This Task to apply the settings.

(l) Select Set Target Interface from the left hand panel.

Here we specify the target interface for the HDL code generation.

In the Input Parameters pane, select Coprocessing - blocking as the Processor/FPGA

synchronization. This will automatically infer an AXI4-Lite interface for all ports in the design,

and specify a memory address for each as shown in Figure 4.29.

(m) Click Run This Task to apply the settings.

Figure 4.28: Zybo HDL Workflow Advisor Input Parameters

Resume

Figure 4.29: HDL Workflow Advisor Set Target Interface
124 IP Creationwww.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(n) Expand Prepare Model for HDL Code Generation in the left hand panel, and select Check

Global Settings.

Here, model-level settings will be checked to verify if the model is ready for HDL code generation.

(o) Click Run This Task to check the model-level settings.

If this step fails, click Modify All to allow HDL Workflow Advisor to modify the settings.

This step should now pass, and you will be presented with a table of the results.

The next few steps are all checks, and can be performed in batch.

(p) Right-click on Check Sample Times in the left hand pane, and select Run to Selected Task as

shown in Figure 4.30.

(q) This will perform the checks one after another to prevent you from running each individually.

All checks should pass.

The final steps involve specifying basic settings about the RTL code, such as what language to use

(VHDL/Verilog), and what code generation reports to generate. Finally the HDL code will be

generated.

(r) Expand HDL Code Generation in the left hand pane, and further expand Set Code Generation

Options.

Click on Set Basic Options.

Figure 4.30: HDL Workflow Advisor Run to Selected Task
125IP Creation www.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(s) Select VHDL as the Language in the Target pane.

You can also select any of the Code generation reports that you would like.

(t) Select Set Advanced Options in the left hand panel.

Here you can specify more advanced options for the HDL code.

We will be leaving the values as default, but you may wish to explore the settings for future

use.

(u) Right-click on Set Advanced Options, and select Run to Selected Task to apply the settings.

(v) Finally, select Generate RTL Code and IP Core from the left hand panel.

This is the step which will finally generate the HDL code for the LMS IP Core.

Set the IP core name as lms_pcore and click Run This Task.

Once HDL Coder has finished generating the HDL code, the Code Generation Report window will

open. This provides a summary of the HDL Coder results and provides further information on the

target interface and clocking.

The final stage of creating our LMS IP core is to package it with IP Packager so that we can use it

in IP Integrator designs. To do this we will need to create a new Vivado project.

(w) Launch Vivado and create a new project called lms_packaging at the following location:

C:\Zynq_Book\hdl_coder_lms, ensuring that the option to create a project subdirectory is

selected. Set RTL Project as the Project Type, select VHDL as the target language, and enter the

default part corresponding to your Zynq development board.

For more detail on the process of creating a new Vivado project, refer to Step (a) of Exercise

4A.

(x) When the project has been created and opened, select Tools > Create and Package IP from

the menu bar, and Click Next.

(y) Select the option to Package a specified directory, and click Next.

(z) Enter C:/Zynq_Book/hdl_coder_lms/hdl_prj/ipcore/lms_pcore_v1_00_a as the IP

Location.

(aa) Click Next to move to the Edit in IP Packager Project Name dialogue, and click Next to accept

the default Project Name and Project Location.

(ab)At the Summary window, and click Finish to launch IP Packager.
126 IP Creationwww.zynqbook.com

Exercise 4B: Creating IP in MathWorks HDL Coder
(ac) In the left hand panel of the IP Packager window, select Ports and Interfaces.

The IP Interfaces panel will open, and you should see that IP Packager has identified the

individual AXI ports, but has not inferred an AXI interface.

To infer an AXI interface:

(ad)Right-click on a blank section of the IP Ports and Interfaces pane, and select Auto Infer

Interface ...

(ae) The Auto Infer Interface Chooser window will open:

Select aximm from the list, as shown, and click OK.

The individual AXI ports in our design will be mapped to an AXILite interface.

(af) Select Addressing and Memory from the left hand panel. Here, IP Packager has incorrectly

specified an address Range of 65536. Click on the Range, and change the value to 32.

(ag)Finally, select Review and Package from the left hand menu.

Review the information provided, and click Package IP.

This completes the generation of an LMS component from Mathworks HDL Coder. You should

now be familiar with:

• Using the Simulink block-based design environment for the design and simulation of IP.

• Using the HDL Workflow Advisor to guide you through the steps of generating RTL code

and IP cores for existing Simulink designs.

• Packaging HDL Coder generated IP blocks in IP Packager for use in Vivado IP Integrator

designs.
127IP Creation www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
Creating IP in Vivado HLS

In this final exercise, we will creating an IP core that will implement the functionality of an NCO.

The tool that we will be using is Vivado HLS, and we shall explore some of the features which

allow us to specify arbitrary precision fixed-point data types, as well as the directives required to

export IP with an AXI-Lite slave interface, to allow the IP core to interface with the Zynq processor.

We will start by creating a new project in Vivado HLS.

(a) Launch Vivado HLS by double-clicking on the Vivado HLS desktop icon: , or by

navigating to Start > All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado HLS >

Vivado HLS 2015.1

(b) When Vivado HLS loads, you will be presented with the Getting Started screen, as in Figure

4.31.

(c) Select the option to Create New Project and the New Vivado HLS Project Wizard will open, as

in Figure 4.32.

Exercise 4C

Figure 4.31: Vivado HLS Getting Started screen
128 IP Creationwww.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
Enter hls_nco as the Project name, and C:\Zynq_Book as Location.

Ensure that the options match those in Figure 4.32, and click Next.

(d) The Add/Remove Files dialogue will appear. This is where existing C-based source files can be

added to the project, or new files created.

Enter nco as the Top Function and click Add Files...

Navigate to C:\Zynq_Book\sources\hls_nco and select nco.cpp. Click Open.

The dialogue should now resemble Figure 4.33.

Click Next.

Figure 4.32: Vivado HLS New Project Wizard

Figure 4.33: Vivado HLS New Project Wizard (Add/Remove Files)
129IP Creation www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(e) A second Add/Remove Files dialogue will appear. This is where C-based testbench files can be

added to the project, or new files created.

Click Add Files... and navigate to C:\Zynq_Book\sources\hls_nco. Select nco_tb.cpp and

click Open to add the testbench file to the project.

Click Next.

(f) The Solution Configuration dialogue will open. Here we will be selecting the part which we

will be targeting.

Ensure the Period is set to 10.

Click the selection button, , in the Part Selection pane.

The Device Selection Dialog will open.

As we are targeting the ZedBoard, select Boards in the Specify pane and choose ZedBoard

Zynq Evaluation and Development Kit, as in Figure 4.34.

Click OK to close the dialogue and return to the New Project Wizard.

As we are targeting the Zybo, select Parts in the Specify pane and then filter the board parts

using the filter drop down menus, as shown in Figure 4.35.

Zed

Figure 4.34: Zedboard Device Selection Dialog

Zybo
130 IP Creationwww.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
The required part can be confirmed by inspecting the Zynq chip on the Zybo development

board. The Z7010 Zynq chip with a clg400 package should be selected. Click OK

(g) Click Finish to close the New Project Wizard and to create the project.

The Vivado HLS workspace will open.

(h) In the Explorer panel, expand the Source and Test Bench

headings. You should see the source files that we specified

in the New Project Wizard, as in Figure 4.36.

(i) Open nco.cpp and examine the contents of the file.

You should notice the inclusion of the header file

ap_fixed.h on the first line. This is the arbitrary precision

fixed-point library which adds support for the use of fixed-

point data types in C++.

Figure 4.35: Zybo Part selection dialogue

Resume

Figure 4.36: Vivado HLS Explorer
panel
131IP Creation www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
The next thing that you should see is the global declaration of a = 4096 value array:

This forms the sinewave lookup table. It is defined as an array of type ap_fixed<16,2>,

which means that all values are16-bit, signed fixed-point (2 integer bits and 14 fractional

bits).

Further information on fixed-point data types in Vivado HLS can be found in Chapter15 -

Vivado HLS: A Closer Look of the Zynq Book.

The functionality of the NCO is contained in the function:

It takes two arguments:

• *sine_sample — A pointer to a 16-bit, signed fixed-point variable which forms the

output sample of the NCO.

• step_size — 16-bit, unsigned fixed-point value which provides the step size input for

the NCO.

(j) Explore the nco function, ensuring that you understand it all.

Open nco_tb.cpp. This is the testbench file which is used to ensure that the functionality of

the C-based source file is correct.

Explore the code in the file, ensuring that you understand the functionality.

This is a simple file which opens a text file in write-mode, to allow you to output the sinusoidal

samples. It then calls the nco function from within a for-loop in order to generate a finite

number of sinusoidal samples, which are then output to the text file.

The text file is formatted in a way which easily allows you to import the samples into MATLAB

for analysis.

Note: The location of the output file is determined by the following line in the testbench file:

You should change the output file path accordingly to a location on your local machine.

212

const ap_fixed<16,2> sine_lut[4096] ...

void nco (ap_fixed<16,2> *sine_sample, ap_ufixed<16,12> step_size)

char *outfile = "C:\\Zynq_Book\\nco_sine.m";
132 IP Creationwww.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
We will now run a C simulation.

(k) Click the Run C Simulation button, , from the Main Toolbar.

The C Simulation Dialog window will open. Click OK to run the simulation with the default

settings.

The C simulation will run, and you should see the following output in the Console window:

The sine wave samples that were generated by the NCO will have been output to the location

which you specified in the previous step.

If you wish, you can import the sine wave samples into MATLAB using the output file to verify that

the NCO has correctly generated a sine wave. This should be done at your own discretion, and will

not be covered in this exercise.

The process of HLS has been covered previously in The Zynq Book Tutorial: Designing With

Vivado High Level Synthesis, and you should refer to it for more detailed information on the

various steps involved. For the purposes of this exercise, it is presumed that you have a

reasonable knowledge of the Vivado HLS tool.

As we want to allow our NCO peripheral to be controlled by a Zynq PS, it is necessary to give it an

interface. This can be achieved using a variety of interfaces such as the AXI interface or a GPIO for

simple data transfers. The AXI interface will be used; this is carried out in Vivado HLS through the

use of directives.
133IP Creation www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(l) Ensure that nco.cpp is the active source file, and select the Directive tab in the right-hand

side of the Vivado HLS workspace, as shown in Figure 4.37.

First, we will define the interface of the NCO as an AXI-Lite slave.

(m) Right-click on nco in the Directive tab, and select Insert Directive.

As the Directive Type, select INTERFACE.

Leave Destination as Directive File.

Select s_axilite from the mode drop-down menu.

Click OK.

We will now define the NCO as having a ap_ctrl_none interface, to remove unneeded control

signals.

(n) Right-click on nco in the Directive tab, and select Insert Directive.

As the Directive Type, select INTERFACE.

Leave Destination as Directive File.

Select ap_ctrl_none from the mode drop-down menu.

Click OK.

Finally, we will be defining the two variables, sine_sample and step_size, as ports on the AXI-

Lite slave interface.

(o) Right-click on sine_sample in the Directive tab, and select Insert Directive.

As the Directive Type, select INTERFACE.

Leave Destination as Directive File.

Select s_axilite from the mode drop-down menu.

Click OK.

Figure 4.37: Vivado HLS Directive tab
134 IP Creationwww.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(p) Repeat the previous step for the step_size variable in the Directive tab.

On completion, the Directive tab should look like Figure 4.38.

We can now run HLS.

(q) Run C Synthesis by clicking the Run C Synthesis button, , from the Main Toolbar.

(r) Click the Export RTL button, , from the Main Toolbar.

The Export RTL Dialog window will open, as shown in Figure 4.39.

(s) Select IP Catalog as the Format Selection.

If you choose, you can edit the IP Identification data by clicking the Configuration button.

Additionally, the IP core can be generated using Verilog or VHDL. Vivado is capable of

synthesising mixed hardware languages. We will keep the default option using Verilog.

Figure 4.38: Complete Directive tab

Figure 4.39: Vivado HLS Export RTL Dialog Window
135IP Creation www.zynqbook.com

Exercise 4C: Creating IP in Vivado HLS
(t) Click OK to generate the IP core.

When RTL Generation has completed, a directory named impl

will be visible in the Explorer panel

This directory contains the ip subdirectory which contains the

generated IP package.

Take a moment to explore the contents of the ip directory.

With the IP generated, the next step would be to include it in an

IP Integrator design (which will be covered in the next tutorial).

For future reference, however, it is worth briefly describing how

this would be done.

In order to include HLS generated IP in IP Integrator, it must first

be added to the Vivado IP Catalog. To do this you must add the

output from HLS to an IP repository. This can be achieved by

either adding the HLS generated output directory to an existing IUP repository directory, or by

creating a new repository. In either case, the directory is the same. In this case:

C:\Zynq_Book\hls_nco\solution1\impl\ip

We have now completed the generation of the NCO component as an IP Integrator compatible

AXI-Lite block. You should now be familiar with:

• Specifying directives in Vivado HLS designs which define the control interface of the

exported RTL.

• The process of specifying an AXI4 interface for a design, to enable a Vivado HLS system

to be easily connected to the Zynq PS.

• Exporting a Vivado HLS design as an IP core that is compatible with the Vivado IP Catalog

and IP Integrator.
136 IP Creationwww.zynqbook.com

The Zynq Book Tutorials 5

Adventures with IP Integrator

v1.4, June 2015
137

Revision History

Date Version Changes

22/10/2013 1.0 First release for Vivado Design Suite version 2013.3

28/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4

06/05/2014 1.2 Updated for changes in Vivado Design Suite version 2014.1

10/09/2014 1.2.1 Minor corrections.

10/04/2015 1.3 Updated for changes in Vivado Design Suite version 2014.4

05/05/2015 1.3.1 Updated to include Zybo development board for Vivado
Design Suite version 2014.4

19/06/2015 1.4 Updated for changes in Vivado Design Suite version 2015.1
138 Adventures with IP Integratorwww.zynqbook.com

Introduction
In this tutorial you will bring together all of the custom IP modules that you created in the previous set of
practical exercises, along with other IP from the Vivado IP Catalog, to create a DSP system for
implementation on a Zynq development board (note that all IP required by this design is also provided
separately). IP for the control of the audio codec on the Zynq development board will be introduced and all
modifications to the IP Integrator design will be carried out. A software application will be developed in the
SDK which will configure all of the IP modules and control the interactions between them and the PS.

The tutorial is split into three exercises as follows:

Exercise 5A - This exercise focuses on importing all of the custom IP modules into the Vivado IP Catalog
for inclusion in an IP Integrator DSP design. The individual IP blocks will be explored, along with their
customisable parameters.

Exercise 5B - The Analog Devices ADAU1761 audio codec on the ZedBoard and SSM2603 audio codec on
the Zybo will be introduced in this exercise, with the inclusion of some pre-packaged IP. Both IPs implement
a I2S serial communication for sending and receiving audio samples to/from the audio codec. The audio
samples are transferred between the PL and the PS via a standard AXI-Lite connection. In order to use the
audio codec, a variety of modifications must be made to the Zynq PS, such as the inclusion of second fabric
clock to drive the codec, and the enabling of a I2C interface for the communication of control signals
between the PS and the codec.

In order to map the external interfaces in the design to physical pins on the Zynq device, a Xilinx Design
Constraints (XDC) file must be created and included in the design. This informs the synthesis and
implementation processes in Vivado where to route the external interface signals. The format of the XDC
file will be explored before generating the hardware for the finalised design.

Exercise 5C - In this final exercise, the finalised design from Exercise 5B will be exported to the SDK for
software development. Here, the application which will control the interactions between the various custom
IP modules, the PS and the audio codec will be created. The various software driver files will also be explored
before building and running the application on the Zynq development board for testing.

NOTE: Exercise 5C requires you to be able to send keyboard commands to the Zynq PS via the UART
terminal. To do this, it is necessary to use third-party terminal program. In this tutorial, we shall be using
PuTTY which can be downloaded for free from the following link:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

To download the standalone executable, select the putty.exe download from the Binaries section.
139Adventures with IP Integrator www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
Importing IP to the Vivado IP Catalog

In this exercise we will be concentrating on importing existing custom IP into the Vivado IP

Catalog. We will be importing the various IP blocks that we created in The Zynq Book Tutorial

IP Creation.

We will start by creating a new Vivado Project.

(a) Launch Vivado 2015.1 and create a new RTL project called adventures_with_ip in the

C:\Zynq_Book directory, ensuring that the option to Create project subdirectory is selected.

Select VHDL as the Target language and the appropriate part for your Zynq development

board.

(b) From Flow Navigator, select IP Catalog from the Project Manager section.

The IP Catalog will open in the Workspace, as seen in Figure 5.1. Note the position of the IP

Settings button which we will need shortly.

In order to import our custom IP into the IP Catalog, we must add a new software repository to

the IP Catalog. We will create a new directory to act as our IP repository and all of our IP sources

to it.

Exercise 5A

Figure 5.1: Vivado IP Catalog

IP Settings
140 Adventures with IP Integratorwww.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
(c) In Windows Explorer, navigate to the location: C:\Zynq_Book\ip_repo. This is the IP

repository that we created in Tutorial 4.

We must now add each of the IP sources that we created in The Zynq Book Tutorial IP Creation

to our repository.

As the LED controller IP is already present in the IP repository, we do not need to import it.

(d) Open a second Windows Explorer and navigate to

C:\Zynq_Book\hdl_coder_lms\hdl_prj\ipcore\lms_pcore_v1_00_a. Copy the archived IP

ZIP file, ac.uk_user_lms_pcore_1.0.zip to the ip_repo directory.

(e) In the second Windows Explorer, navigate to C:\Zynq_Book\hls_nco\solution1\impl\ip

and copy the archived IP ZIP file, xilinx_com_hls_nco_1_0.zip to the ip_repo directory.

That completes the copying of our custom made IP sources to our newly created IP repository.

(f) We will now add one more IP source to our repository — an existing IP block which controls

the audio codec on the Zynq development board.

In Windows Explorer, navigate to

C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\ip and copy the

archived IP ZIP file, zed_audio_ctrl.zip to the ip_repo directory that we located in Step (c).

If you have not completed the previous tutorial, a master set of the IP sources is contained in

C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\ip which you can

copy into the repository for use in this tutorial.

In Windows Explorer, navigate to

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\ip and copy the archived

IP ZIP file, xilinx_com_zybo_audio_ctrl_1.0.zip to the ip_repo directory that we located in

Step (c).

If you have not completed the previous tutorial, a master set of the IP sources is contained in

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\ip which you can copy into

Zed

Zybo
141Adventures with IP Integrator www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
the repository for use in this tutorial.

Now that we have created the IP repository and added all of our existing IP sources, we can now

add the repository to the IP Catalog.

(g) In the Vivado IP Catalog tab, click the IP Settings button, , as highlighted in Figure 5.1.

The IP Settings window will open, as shown in Figure 5.2.

(h) Click the symbol in the IP Repositories panel, and browse to

C:\Zynq_Book\ip_repo.

Click Select to add the repository to the IP Catalog.

You should see that the LED Controller IP is already present in the IP in Selected Repository

pane as it is in un-archived format.

Resume

Figure 5.2: IP Settings Window
142 Adventures with IP Integratorwww.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
(i) We must now add the other IP sources to the repository by un-archiving them. In the Selected

Repository panel, shown in Figure 5.2, click the symbol to add IP.

The Select IP TO Add To Repository window will open as in Figure 5.3.

Select ac.uk_user_lms_pcore_1.0.zip and click OK. This will extract the archived IP sources

into a usable format in the repository.

Repeat this procedure for the remaining IP sources:

• xilinx_com_hls_nco_1_0.zip

• zed_audio_ctrl.zip

The resulting IP in Selected Repository panel should resemble that shown in Figure 5.4.

Click OK.

Zed

Figure 5.3: Select IP to Add to Repository

Figure 5.4: All IP sources added to IP Catalog
143Adventures with IP Integrator www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
The Select IP TO Add To Repository window will open as in Figure 5.5.

Select ac.uk_user_lms_pcore_1.0.zip and click OK. This will extract the archived IP sources

into a usable format in the repository.

Repeat this procedure for the remaining IP sources:

• xilinx_com_hls_nco_1_0.zip

• xilinx_com_zybo_audio_ctrl_1.0.zip

The resulting IP in Selected Repository panel should resemble that shown in Figure 5.6.

Click OK.

With all of our IP now imported into the IP Catalog, we can now create an IP Integrator block

design which incorporates all of the IP blocks.

(j) In Flow Navigator, select Create Block Design.

Zybo

Figure 5.5: Select IP to Add to Repository

Figure 5.6: All IP sources added to IP Catalog

Resume
144 Adventures with IP Integratorwww.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
(k) In the Create Block Design window, set the Design name as ip_design, and click OK.

(l) In the block design canvas, right-click and select Add IP.

In the Search box, enter led_controller and double-click led_controller_v1_0 to add an

instance of the LED controller IP to the design.

(m) Repeat Step (l) searching for:

• nco and double-clicking Nco

• lms and double-clicking lms_pcore_v1_0

We have now added all of the custom IP that we created in the previous tutorial. At this point we

will avoid adding the audio controller IP, as it is the focus of the next exercise.

In order to connect and control all of the IP, we must now add an instance of a Zynq Processor.

(n) In the block design canvas, right-click and select Add IP.

In the Search box, enter zynq and double-click ZYNQ7 Processing System.

At this stage, Designer Assistance should be available:

Select the Run Block Automation option from the Designer Assistance message at the top of

the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,

to generate the external connections for both the DDR and FIXED_IO interfaces, and apply

the relevant board presets.

Your ZYNQ7 Processing System block should now resemble Figure 5.7.

Zed

Figure 5.7: Zedboard ZYNQ7 Processing System External Connections
145Adventures with IP Integrator www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
As the Zedboard platform is the target development board, and this was specified on

creation of the project, Vivado will configure the Zynq processor block accordingly.

Select the Run Block Automation option from the Designer Assistance message at the top of

the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,

to generate the external connections for both the DDR and FIXED_IO interfaces, and apply

the relevant board presets.

Your ZYNQ7 Processing System block should now resemble Figure 5.8.

As the Zybo platform is the target development board, and this was specified on creation of

the project, Vivado will configure the Zynq processor block accordingly.

Run Connection Automation for each of the three IP blocks, to connect them to the Zynq7

Processing System block, via an AXI Interconnect block.

Zybo

Figure 5.8: Zybo ZYNQ7 Processing System External Connections

Resume
146 Adventures with IP Integratorwww.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
Select All Automation as in Figure 5.9 and click OK.

You may recall that to allow the LED Controller block to control the LEDs on the board, the

LEDs_out port must be made external.

(o) Hover the mouse pointer over the LEDs_out interface on the led_controller block until the

cursor changes to a pencil. Right-click and select Make External. Alternatively, select the

interface and use the keyboard shortcut Ctrl+T.

Notice that the lms_pcore_0 block has two unconnected input ports, as highlighted in Figure

5.10.

These are the CLK and reset ports of the IP, and must be connected in order for the IP to be

functional.

Figure 5.9: Run Connection Automation for three hardware blocks

Figure 5.10: LMS IP block
147Adventures with IP Integrator www.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
(p) Hover the mouse pointer over the IPCORE_CLK interface on the lms_pcore_0 block until the

cursor changes to a pencil. Click and drag the mouse pointer until it is hovering over the wire

that connects to the AXI_Lite_ACLK interface and the wire is highlighted, as shown in Figure

5.11, and release the mouse button to create the connection.

You should also see a pop-up message notifying you of the net which you are connecting to.

(q) Repeat the procedure of the previous step to, this time, connect the IPCORE_RESETN

interface to the wire which connects to the AXI_Lite_ARESETN interface.

Your current block diagram should now resemble Figure 5.12.

Figure 5.11: Manually connecting the LMS IP CLK

Zed

Figure 5.12: Zedboard end of exercise block diagram
148 Adventures with IP Integratorwww.zynqbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog
Your current block diagram should now resemble Figure 5.13.

At this stage we must now add and configure the audio controller IP, and so we will conclude this

first exercise on importing custom IP to the Vivado IP Catalog. You should now be familiar with:

• Adding an IP repository to the Vivado IP Catalog.

• Importing and adding archived IP files to a custom IP repository.

• Adding custom IP to a Vivado IP Integrator block design.

Note: Do not close the current Vivado project as we will be using it again in the next exercise.

Zybo

Figure 5.13: Zybo end of exercise block diagram

Resume
149Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
Audio in Vivado IP Integrator

In this exercise we will be focusing on adding an audio controller IP instance to an existing Vivado

IP Integrator design, and the modifications which must be made to the Zynq Processor block in

order to use the audio codec on the Zynq development board. Such modifications include the

addition of a second PL fabric clock and the enabling of the I2C interface for the communication

of control signals between the Zynq PS and the codec.

(a) We will begin by adding an instance of the audio controller IP to the block design.

In the Vivado IP Integrator block design canvas, right-click and select Add IP.

Search for audio and double-click on zed_audio_ctrl, to add an instance to the block design.

The zed_audio_ctrl_0 block should now be visible on the canvas, as shown in Figure 5.14.

Make the initial connection between the Zynq PS and the zed_audio_ctrl_0 block by clicking

Run Connection Automation and clicking OK.

You should notice that there are still four unconnected ports. These are required to be made

external to connect to the physical pins of the ZedBoard’s audio codec.

Hover the mouse pointer over each of the unconnected interfaces on the zed_audio_ctrl

block until the cursor changes to a pencil. Right-click and select Make External. Alternatively,

select the interface and use the keyboard shortcut Ctrl+T.

In the Vivado IP Integrator block design canvas, right-click and select Add IP.

Search for audio and double-click on zybo_audio_ctrl, to add an instance to the block

design.

Exercise 5B

Zed

Figure 5.14: ZedBoard Audio Controller block

Zybo
150 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
The zybo_audio_ctrl_0 block should now be visible on the canvas, as shown in Figure 5.15.

Make the initial connection between the Zynq PS and the zybo_audio_ctrl_0 block by clicking

Run Connection Automation and clicking OK.

You should notice that there are still five unconnected ports. These are required to be made

external to connect to the physical pins of the Zybo’s audio codec.

Hover the mouse pointer over each of the unconnected interfaces on the zybo_audio_ctrl

block until the cursor changes to a pencil. Right-click and select Make External. Alternatively,

select the interface and use the keyboard shortcut Ctrl+T.

The next step is to make the necessary modifications to the Zynq7 PS block.

Figure 5.15: Zybo Audio Controller block

Resume
151Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
(b) Double-click on the Zynq7 Processing System block to open the Re-customize IP window, as

shown in Figure 5.16.

This view allows you to make changes to the configuration of the Zynq PS. As IP Integrator is

board aware, all of the basic settings that apply to many Zynq development boards have been

made for us. There are a few changes, however, that must be made when using the audio codec.

First we will add a second PL fabric clock as a separate clock is required for the MCLK pin on the

audio codec.

(c) Click on Clock Configuration in the Page Navigator panel on the left hand side of the window.

Expand PL Fabric clocks in the Clock Configuration panel, and enable FCLK_CLK1.

Figure 5.16: Re-customize IP window for Zynq PS
152 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
Change the Requested Frequency of FCLK_CLK1 to 10 MHz, as shown in Figure 5.17.

Change the Requested Frequency of FCLK_CLK1 to 12.288 MHz, as shown in Figure 5.18.

Next, we must enable one of the Zynq PS’s I2C communication interfaces to allow the PS to

communicate with the audio codec.

(d) Select MIO Configuration from the Page Navigator panel.

This configuration view allows us to enable/disable the PS peripherals. These peripherals can be

routed through the dedicated Multiplexed I/Os (MIO) on the device, or through the Extended

Multiplexed I/Os (EMIOs) which route to the PL fabric.

Zed

Figure 5.17: Adding a 10 MHz fabric clock

Zybo

Figure 5.18: Adding a 12.288 MHz fabric clock

Resume
153Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
As we want to communicate with the audio codec (which is connected to fabric pins of the Zynq

device) we will be routing the I2C signals through the EMIOs.

(e) Expand the I/O Peripherals and enable the I2C 0 peripheral in the MIO Configuration panel.

EMIO should automatically be selected for IO, as shown in Figure 5.19.

No more changes to the Zynq PS are required.

(f) Close the Re-customize IP window and apply the changes to the PS by clicking OK.

The IP Integrator canvas should update,

and the ZYNQ7 Processing System block

should now look like Figure 5.20.

You should note the addition of the two

new interfaces, IIC_0 and FCLK_CLK1. As

these will be driving signals on the audio

codec, which is situated on the board

(external to the Zynq device), we must

make these external.

Figure 5.19: Configuring the I2C interface

Figure 5.20: Zedboard Zynq7 Processing System block

Zed
154 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
(g) Hover the mouse pointer over each of the IIC_0 and FCLK_CLK1 interfaces on the

processing_system7_0 block until the cursor changes to a pencil. Right-click and select Make

External. Alternatively, select the interface and use the keyboard shortcut Ctrl+T.

The IP Integrator canvas should update, and the ZYNQ7 Processing System block should now

look like Figure 5.21.

You should note the addition of the two new interfaces, IIC_0 and FCLK_CLK1. As these will

be driving signals on the audio codec, which is situated on the board (external to the Zynq

device), we must make these external.

(h) Hover the mouse pointer over each of the IIC_0 and FCLK_CLK1 interfaces on the

processing_system7_0 block until the cursor changes to a pencil. Right-click and select Make

External. Alternatively, select the interface and use the keyboard shortcut Ctrl+T.

The final addition to the Block design that we need to make, is to add a single GPIO instance

and a dual GPIO instance:

• Single-channel GPIO with a width of 2-bits to connect to the Zedboard’s audio codec’s

I2C ADDR pins or a width of 1-bit to connect to the Zybo’s audio codec’s Digital Mute.

• Dual-channel GPIO with a width of 32-bits to connect to the push buttons and slide

switches for user input.

Zybo

Figure 5.21: Zybo Zynq7 Processing System block

Resume
155Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
First we will add the single GPIO to control the Zynq development board codec.

(i) In the Vivado IP Integrator block design canvas, right-click and select Add IP.

Search for gpio and double-click on AXI_GPIO, to add an instance to the block design.

(j) Run Connection Automation for the axi_gpio_0/S_AXI interface, to connect the GPIO

controller to the Zynq PS via the AXI Interconnect (do not Run Connection Automation for

the GPIO’s output interface).

(k) Open the Re-customize IP window by double-clicking on the axi_gpio_0 block. The window,

as shown in Figure 5.22, will open.

(l) Select the IP Configuration tab.

Enter 2 as the GPIO Width, as shown in Figure 5.23, and close the window by clicking OK.

Figure 5.22: Re-customize IP window (GPIO)

Zed

Figure 5.23: Zedboard GPIO width setting
156 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
Enter 1 as the GPIO Width, as shown in Figure 5.24, and close the window by clicking OK.

(m) Make the GPIO interface of the axi_gpio_0 block external.

Next we will add a second instance of the AXI GPIO Controller

(n) Add an instance of the AXI_GPIO IP to the block design and Run Connection Automation for

S_AXI to connect the new GPIO controller to the Zynq PS via the AXI Interconnect (do not

Run Connection Automation for the GPIO’s output interface).

(o) The newly created AXI GPIO block must now be configured to allow for Dual Channel

operation.

Double-click on the axi_gpio_1 block to open the Re-customize IP window.

In the IP Configuration tab, select the option to Enable Dual Channel, and click OK.

You should see that the axi_gpio_1 block now has two output ports, 1 each to connect to

the push buttons and the slide switches on the ZedBoard:

Run Connection Automation for /axi_gpio_1/GPIO and select btns_5bits as the option for

Select Board Interface.

Click OK.

Run Connection Automation for /axi_gpio_1/GPIO2 and select sws_8bits as the option for

Select Board Interface.

Zybo

Figure 5.24: Zybo GPIO width setting

Resume

Zed
157Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
Click OK.

You should see that the axi_gpio_1 block now has two output ports, 1 each to connect to

the push buttons and the slide switches on the Zybo:

Run Connection Automation for /axi_gpio_1/GPIO and select btns_4bits as the option for

Select Board Interface.

Click OK.

Run Connection Automation for /axi_gpio_1/GPIO2 and select sws_4bits as the option for

Select Board Interface.

Click OK.

(p) The Zynq Processing System address of each IPCore will now be re-configured to increase

their efficiency and reduce unused address space.

Select the Address Editor tab from the Block Design window, as highlighted in Figure 5.25.

Click the Expand All button, as highlighted in Figure 5.25.

Check the assigned Range for each of the peripheral cells against Figure 5.25.

If they do not match those in Figure 5.25, you must manually change the ranges so that they

do match Figure 5.25. If they match those in Figure 5.25, you can skip this step and move on

Zybo

Resume

Zed

Figure 5.25: Zedboard Address Editor tab

Address Editor tabExpand All button
158 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
to Step (q).

Select the Address Editor tab from the Block Design window, as highlighted in Figure 5.26.

Click the Expand All button, as highlighted in Figure 5.26.

Check the assigned Range for each of the peripheral cells against Figure 5.26.

If they do not match those in Figure 5.26, you must manually change the ranges so that they

do match Figure 5.26. If they match those in Figure 5.26, you can skip this step and move on

to Step (q).

(q) Return to the block design by selecting the Diagram tab in the IP Integrator window.

(r) Click the Regenerate Layout button, , to regenerate the layout of the various IP blocks and

make the block design easier to follow.

Zybo

Figure 5.26: Zybo Address Editor tab

Address Editor tabExpand All button

Resume
159Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
Your complete block design should be similar to Figure 5.27.Zed

Figure 5.27: Zedboard Completed block design
160 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
Your complete block design should be similar to Figure 5.28.

(s) Save the block design.

Before we can run synthesis and implementation for our design, we must generate the RTL files

for our block design.

(t) Generate a top-level HDL wrapper file, by right-clicking on ip_design in the Sources tab and

selecting Create HDL Wrapper.

In the Create HDL Wrapper window, select Let Vivado manage wrapper and auto-update,

and click OK.

Zybo

Figure 5.28: Zybo Completed block design

Resume
161Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
The next task that we have to do in Vivado before we can run synthesis and implementation of

the design, is to add a constraints file which will map the external interfaces of our design to

specific pins on the Zynq device.

(u) Select Add Sources from the Project Manager section of Flow Navigator.

In the Add Sources window, select Add or Create Constraints, and click Next.

In the Add or Create Constraints window, click the symbol and then select Add Files...

Navigate to:

C:/Zynq_Book/sources/zedboard/adventures_with_ip_integrator/constraints

Select adventures_with_ip.xdc, and click OK.

Navigate to:

C:/Zynq_Book/sources/zybo/adventures_with_ip_integrator/constraints

Select adventures_with_ip.xdc, and click OK.

Click Finish to close the Add Sources window, and import the constraints file.

(v) Open the constraints file by expanding the Constraints section of Sources tab, and double-

clicking on adventures_with_ip.xdc.

The top section of the file contains the constraints which map the individual bits of the LEDs_out

interface to the corresponding pins on the Zynq device, and you will have seen these before in

the first exercise of the previous tutorial.

Zed

Zybo

Resume
162 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
The bottom section of the file, as shown in Figure 5.29, contains the constraints which map the

various external ports of the design which relate to the audio codec, to their corresponding pins

on the Zynq device.

Zed

ZedBoard Audio Codec Constraints
set_property PACKAGE_PIN AA6 [get_ports BCLK]
set_property IOSTANDARD LVCMOS33 [get_ports BCLK]

set_property PACKAGE_PIN Y6 [get_ports LRCLK]
set_property IOSTANDARD LVCMOS33 [get_ports LRCLK]

set_property PACKAGE_PIN AA7 [get_ports SDATA_I]
set_property IOSTANDARD LVCMOS33 [get_ports SDATA_I]

set_property PACKAGE_PIN Y8 [get_ports SDATA_O]
set_property IOSTANDARD LVCMOS33 [get_ports SDATA_O]

#MCLK
set_property PACKAGE_PIN AB2 [get_ports FCLK_CLK1]
set_property IOSTANDARD LVCMOS33 [get_ports FCLK_CLK1]

set_property PACKAGE_PIN AB4 [get_ports iic_0_scl_io]
set_property IOSTANDARD LVCMOS33 [get_ports IIC_0_scl_io]

set_property PACKAGE_PIN AB5 [get_ports iic_0_sda_io]
set_property IOSTANDARD LVCMOS33 [get_ports IIC_0_sda_io]

set_property PACKAGE_PIN AB1 [get_ports {gpio_tri_io[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {GPIO_tri_io[0]}]

set_property PACKAGE_PIN Y5 [get_ports {gpio_tri_io[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {GPIO_tri_io[1]}]

Figure 5.29: ZedBoard audio codec constraints
163Adventures with IP Integrator www.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
The bottom section of the file, as shown in Figure 5.30, contains the constraints which map the

various external ports of the design which relate to the audio codec, to their corresponding pins

on the Zynq device.

Zybo

Zybo Audio Codec Constraints
set_property PACKAGE_PIN K18 [get_ports BCLK]
set_property IOSTANDARD LVCMOS33 [get_ports BCLK]

set_property PACKAGE_PIN L17 [get_ports PBLRCLK]
set_property IOSTANDARD LVCMOS33 [get_ports PBLRCLK]

set_property PACKAGE_PIN M18 [get_ports RECLRCLK]
set_property IOSTANDARD LVCMOS33 [get_ports RECLRCLK]

set_property PACKAGE_PIN K17 [get_ports RECDAT]
set_property IOSTANDARD LVCMOS33 [get_ports RECDAT]

set_property PACKAGE_PIN M17 [get_ports PBDATA]
set_property IOSTANDARD LVCMOS33 [get_ports PBDATA]

MCLK
set_property PACKAGE_PIN T19 [get_ports FCLK_CLK1]
set_property IOSTANDARD LVCMOS33 [get_ports FCLK_CLK1]

#I2C 0 Interface
set_property PACKAGE_PIN N18 [get_ports iic_0_scl_io]
set_property IOSTANDARD LVCMOS33 [get_ports iic_0_scl_io]

set_property PACKAGE_PIN N17 [get_ports iic_0_sda_io]
set_property IOSTANDARD LVCMOS33 [get_ports iic_0_sda_io]

#GPIO_0[0] Digital Mute
set_property PACKAGE_PIN P18 [get_ports {gpio_tri_io[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {gpio_tri_io[0]}]

Figure 5.30: Zybo audio codec constraints
164 Adventures with IP Integratorwww.zynqbook.com

Exercise 5B: Audio in Vivado IP Integrator
Next, we will create a bitstream so that we can program the PL of the Zynq device with our design.

(w) In Flow Navigator, select Generate Bitstream from the Program and Debug section.

At the No Implementation Results Available window, click Yes to launch synthesis and

implementation. This may take a few minutes depending on the speed of your computer.

When bitstream generation is complete, select Open Implemented Design in the Bitstream

Generation Completed window, and click OK.

Finally, we can export the hardware to the SDK, where we will create a software application to

control the system in the next exercise.

(x) Select File > Export > Export Hardware... from the Menu Bar.

Ensure that the option to Include Bitstream is selected, and click OK.

(y) Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

This concludes this exercise of audio on a Zynq development board. You should now be familiar

with:

• Making the required changes to the Zynq PS in order to use the audio codec on the

ZedBoard and/or Zybo.

• Making the required external connections to allow the Zynq PL to be connected to the

audio codec via the external Zynq device pins.

• Using a constraints file to map the external interfaces of the design which relate to the

audio codec, to the corresponding pins on the Zynq device.

Resume
165Adventures with IP Integrator www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
Creating an Audio Software Application in SDK

In this final exercise we will be creating a software application which ties together all of the IP

modules which we have created, to create a DSP-oriented system. The procedure of setting up

the ZedBoard and Zybo audio codec via the hardware registers will also be introduced.

Once the SDK has launched from the previous exercise, we can start by creating a new

application.

(a) Select File > New > Application Project from the Menu Bar.

In the New Project dialogue, enter adventures_with_ip as the Project name.

By default the option to create a new Board Support Package will be selected.

Click Next.

(b) In the Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the custom IP peripherals in the previous tutorial a set of

software driver files were generated for each. We must now point SDK to those driver files. This is

done by adding new repositories to the SDK project.

Exercise 5C
166 Adventures with IP Integratorwww.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(c) Navigate to Xilinx Tools > Repositories in the Menu Bar.

In the Repositories Preferences window, click on New, as shown in Figure 5.31.

(d) Add the LED Controller drivers by browsing to the directory:

C:\Zynq_Book\ip_repo\led_controller_1.0 and clicking OK.

(e) Click New.

Add the NCO drivers by browsing to the directory:

C:\Zynq_Book\ip_repo\xilinx_com_hls_nco_1_0

and clicking OK.

Upon closing the preferences window, SDK will automatically scan the repository and rebuild the

project to include the driver files.

Figure 5.31: SDK Repository Peripherals window
167Adventures with IP Integrator www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
We must now check that the newly imported drivers have been assigned to their corresponding

peripherals.

(f) The system.mss tab should be open in the Workspace. If it is not, open it by expanding

adventures_with_ip_bsp in Project Explorer and double-clicking on system.mss.

(g) At the top left of the system.mss tab, click Modify this BSP’s Settings.

The Board Support Package Settings window will open.

(h) Select drivers from the left-hand menu and check that the led_controller driver is assigned

to the led_controller_0 component and the nco_top driver is assigned to the nco_0

component, as highlighted in Figure 5.32.

Click OK.

The project will now rebuild.

The LMS IP core that we created with MathWorks HDL Coder and the audio codec IP also have

software drivers, but due to their directory structures, we must import their drivers to the

workspace rather than use a repository.

(i) In the Project Explorer panel, expand adventures_with_ip, right-click on src and select

Import.

In the Import window, expand General and double-click on File System.

Click Browse in the top right corner, and navigate to

C:\Zynq_Book\hdl_coder_lms\hdl_prj\ipcore\lms_pcore_v1_00_a\include.

Click OK, to import the LMS IP driver.

In the right-hand panel, select lms_pcore_addr.h and click Finish.

Note: This directory will only be available if you have completed Exercise 4B of Tutorial 4.

If you have not completed this exercise, you can obtain lms_pcore_addr.h from the

Zedboard directory:

C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\drivers

Figure 5.32: Driver assignment
168 Adventures with IP Integratorwww.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
or the Zybo directory:

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\drivers

(j) The audio.h header file should be imported using the correct directory depending on your

chosen Zynq development board.

The Zedboard directory:

C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\drivers.

The Zybo directory:

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\drivers.

(k) With all the driver files for the IP imported, we can import the source files for our application.

Follow the same procedure as in Step (i) to import the following files from the

C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\software

directory:

• adventures_with_ip.h

• adventures_with_ip.c

• audio.c

• ip_functions.c

Follow the same procedure as in Step (i) to import the following files from the

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\software

directory:

• adventures_with_ip.h

• adventures_with_ip.c

• audio.c

• ip_functions.c

The source files will be imported and the application should build.

(l) Open the header file adventures_with_ip.h by double-clicking on it in Project Explorer.

Zed

Zybo

Resume
169Adventures with IP Integrator www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
This is the main header file for the software application. At the top of the file you should see a list

of included header files, which define a variety of functions which are used in the software

application.

Further down the file you should see the inclusion of the custom IP header files which we

imported earlier:

As an example of one of the header files that was created during the IP creation process, we will

open the header for the LMS IP core.

(m) In the Outline tab on the right hand side of the SDK window, double click on

lms_pcore_addr.h.

In the LMS header file, you should see the following definitions:

These define the memory-mapped address offsets of the various signals of the LMS peripheral.

Data can be transferred between the peripheral in the PL and the software in the PS by writing to,

or reading from the these offset addresses. The actual address that would be used to access these

signals would be BASE ADDRESS + OFFSET.

Each IP peripheral that we added to our block design in IP Integrator is automatically assigned a

base address in memory. These addresses can be determined from a Xilinx parameters C header

file which is automatically created when exporting an IP Integrator design that contains a Zynq

Processing System. The header file is called xparameters.h.

/* -- *
 * Custom IP Header Files *
 * -- */
#include "audio.h"
#include "lms_pcore_addr.h"
#include "xnco.h"

#define IPCore_Reset_lms_pcore 0x0 //write 0x1 to bit 0 to reset IP core
#define IPCore_Enable_lms_pcore 0x4 //enabled (by default) when bit 0 is 0x1
#define IPCore_Strobe_lms_pcore 0x8 //write 1 to bit 0 after write all input data
#define IPCore_Ready_lms_pcore 0xC //wait until bit 0 is 1 before read output data
#define x_k__Data_lms_pcore 0x100 //data register for port x(k)
#define d_k__Data_lms_pcore 0x104 //data register for port d(k)
#define e_k__Data_lms_pcore 0x108 //data register for port e(k)
170 Adventures with IP Integratorwww.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
We shall now explore the Xilinx parameters header file.

(n) Switch back to the adventures_with_ip.h tab in the Editor window.

xparameters.h is included in this main header file, and is therefore accessible from the Outline

tab.

(o) Open xparameters.h by double-clicking on it in the Outline tab.

Here you should see a list of memory base address definitions, along with a number of other

parameters.

As we were previously looking at the LMS header file, we will look at the definition of the base

address for the LMS peripheral.

(p) Scroll down the file until you see the following lines:

Here we see the definitions of both the base and high addresses in memory for the LMS

peripheral. This will vary depending on the value the Base Address was set to in Exercise 5B, Step

(p). The address range was set to a value of 64 Kilo-Bytes. The difference between the high

address and the base address is 0xFFFF, the LMS peripheral has an addressable range of 65536

bits, or 64 Kilo-Bytes.

Referring back to the memory-mapped address offsets for the LMS block in Step (m), if we, for

example, wanted to write data to the input port x(k), we would do this by writing the desired

value to the BASE ADDRESS + OFFSET, which in this case would be:

XPAR_LMS_PCORE_0_BASEADDR + x_k__Data_lms_pcore = 0x43C10000 + 0x100

Giving a unique address of 0x43C10100.

We will now take a look at the main software application file.

/* Definitions for peripheral LMS_PCORE_0 */
#define XPAR_LMS_PCORE_0_BASEADDR 0x43C00000
#define XPAR_LMS_PCORE_0_HIGHADDR 0x43C0FFFF
171Adventures with IP Integrator www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(q) Open the source file adventures_with_ip.c by double-clicking on it in Project Explorer.

This file contains the main function, and another function which implements an interactive menu

that allows the user to control the system using keyboard commands via the terminal.

Take a moment to look over the file and note the function calls which are made.

In the main() function, the first set of functions are called to setup and configure the audio

codec. These functions are defined in audio.c, which we will look at next.

(r) Open audio.c.

Here we have the functions which are called to initialise the audio codec and the required I2C

interface in the Zynq PS.

We don’t want to go into great detail about the functionality contained here, but in basic terms

the purpose of these functions is to configure the audio codec by writing to the codec’s control

registers.

Each control register has a unique address which can be accessed via the I2C serial interface.

The control register addresses are defined in the audio.h header file.

(s) Open audio.h.

This file contains a number of definitions relating to the audio codec and the I2C interface, as well

as some prototype function definitions.

You should see an enumerated type which lists all of the audio codec’s control register addresses,

which were mentioned in the previous step.

More information on the audio codecs for both the Zedboard and Zybo can be found in the

following data sheets respectively:

http://www.analog.com/static/imported-files/data_sheets/ADAU1761.pdf

http://www.analog.com/media/en/technical-documentation/data-sheets/SSM2603.pdf

Next we will have a look at the functions which control the custom IP peripherals in the PL.
172 Adventures with IP Integratorwww.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(t) Open ip_functions.c.

This file contains the functions which control the IP peripherals, as well as some functions to

initialise drivers for the GPIO and NCO.

The three functions of interest are:

• audio_stream() — Implements stereo audio loopback between the input and output

ports of the audio codec. Left and right audio samples are read in from the audio

controller peripheral’s I2S receive register and are then written back out to the

controller’s I2S transmit register.

• tonal_noise() — This function builds upon the audio loopback in audio_stream(). A

step size value is input via the slide switches on the board. The corresponding value is

then output to the LEDs on the board by writing to the memory-mapped register of the

LED controller peripheral. The step size value is also output to the NCO peripheral using

the XNco_Set_step_size_V() function defined by the NCO driver file. A sinusoidal

sample created by the NCO peripheral is the read in by the

XNco_Get_sine_sample_V() NCO driver function and, as in the previous audio

streaming function, left and right audio samples are received from the audio codec. The

sinusoidal noise component is then added to the left and right audio samples before

being written to the audio controller for output to the codec.

• lms_filter() — This function combines the functionality of the NCO and the LMS

peripherals to create a system which adds tonal noise to an audio signal, before using an

LMS adaptive filter for noise cancellation to remove the added noise. As in the

tonal_noise() function, sinusoidal samples are generated from the NCO peripheral

and added to the left and right audio samples from the audio controller. The sinusoidal

sample is then input to the LMS as the input sample x(k) and the sample with added

tonal noise is input as the desired signal d(k). The resulting output of the LMS peripheral

is only read if the user presses any of the push buttons on the board, otherwise the

corrupted audio sample is retained. This allows the user to verify that the LMS filter

peripheral is removing the noise.
173Adventures with IP Integrator www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
Now that we have had a look at the functions and definitions contained in the various source and

header files, we can move on to actually implementing the system on the Zynq development

board.

To begin, we will program the Zynq PL with the bitstream that we generated in the previous

exercise.

Note: At this stage ensure that the Zynq development board is powered on and both the PROG

and UART USB ports are connected to your host computer. The Zybo has a single USB port for

both PROG and UART connections and the Zedboard has two USB ports, one for PROG and

another for UART.

You should also ensure that the board is configured to boot from JTAG.

(u) Select Xilinx Tools > Program FPGA from the Menu Bar. The Program FPGA window should

be configured as in Figure 5.33.

Click Program.

The Zynq PL on the board will be configured with the bitstream and the DONE LED should

illuminate.

Figure 5.33: Program FPGA window
174 Adventures with IP Integratorwww.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
At this stage we must invoke PuTTY — the terminal program which you should have downloaded

at the beginning of this tutorial.

(v) At the location which you downloaded PuTTY, double-click PuTTY.exe. As you downloaded

the executable file, Windows may present a security warning. Accept the warning by clicking

Run.

(w) PuTTY Configuration should open, as shown in Figure 5.34.

(x) Select Serial as Connection type (highlighted in Figure 5.34) and configure the settings as

specified in Figure 5.35.

NOTE: The value of the Serial line entry will vary depending on which the USB UART cable is

connected to.

In order to determine this value on a Windows system, open the Device Manager and identify

the COM port which may be named ‘USB Serial Port’.

Figure 5.34: PuTTY

Figure 5.35: PuTTY configuration
175Adventures with IP Integrator www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(y) Click Open, to open the terminal connection. The PuTTY terminal window will open.

With the terminal connection open, the final step is the run the software on the Zynq PS.

(z) Right-click on adventures_with_ip in Project explorer and select Run As > Launch on

Hardware (GDB).

In the PuTTY terminal you should see the following output:

Note: At this point you should attach an audio patch cable between the PC speaker output and

the board’s LINE IN input. Also, connect headphones to the board’s LINE OUT input. These

connections are highlighted in Figure 5.36.

In the PuTTY terminal you should see the following output:

Zed

PC speaker out Headphones

Figure 5.36: ZedBoard Audio Jacks

Zybo
176 Adventures with IP Integratorwww.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
Note: At this point you should attach an audio patch cable between the PC speaker output and

the board’s LINE IN input. Also, connect headphones to the board’s HPH OUT input. These

connections are highlighted in Figure 5.37.

(aa) Open the audio file

C:\Zynq_Book\sources\input\original_speech.wav

in an audio player, and begin playback.

Note: It may be useful to turn on the repeat setting in the audio player for continuous

playback.

(ab)Set all switches on the Zynq development board to the ‘off’ position.

(ac) In the PuTTY terminal window, press the ‘s’ key on your keyboard.

This will prompt the software application to enter the audio_stream() function which we

looked at earlier.

You should be able to hear audio of speech via the headphone connection.

(ad)Press the ‘q’ key on the keyboard to return to the menu.

(ae) Press the ‘n’ key on the keyboard. This will prompt the application to enter the

tonal_noise() function.

Initially you should hear the same audio signal.

You should note that currently there is no step size being input to the NCO.

Push slide switch SW0 into the on position. You should now be able to hear a sinusoidal tone

which has been added to the audio signal. LED 0 should also be lit.

Experiment with different step size values by varying the on/off values of slide switches SW1

and SW2. This will vary the frequency of the tonal noise. Note the updates in Putty.

(af) Press the ‘q’ key on the keyboard to return to the menu.

PC speaker out

Headphones

Figure 5.37: Zybo Audio Jacks

Resume
177Adventures with IP Integrator www.zynqbook.com

Exercise 5C: Creating an Audio Software Application in SDK
(ag)Press the ‘f’ key on the keyboard. This will prompt the application to enter the

lms_filter() function. The basic functionality here is the same as in the previous NCO

function, and you can add tonal noise to the audio signal using the slide switches.

With tonal noise being added to the audio signal, press and hold any of the push buttons on

the board. The sinusoidal tone will be adaptively filtered by the LMS, and the tonal noise

removed.

This concludes this exercise on the creation of an audio application in the SDK. You should now

be familiar with:

• The automatically generated xparameters.h header file, and its contents.

• Identifying memory-mapped base addresses and offsets for communication between

software running on the Zynq PS and peripherals in the PL.

• The procedure of configuring the ZedBoard’s ADAU1761 and Zybo’s SSM2603 audio

codec via the control register addresses.

• Receiving and sending audio samples to/from the audio codec via an audio controller

block in the PL.

• The process of communicating with custom peripherals in the PL via generated software

drivers.
178 Adventures with IP Integratorwww.zynqbook.com

	Title Page
	Acknowledgements
	How to Use This Book
	Contents
	1. First Designs on Zynq
	1A. Creating a First IP Integrator Design
	1B. Creating a Zynq System in Vivado
	1C. Creating a Software Application in the SDK

	2. Next Steps in Zynq SoC Design
	2A. Expanding the Basic IP Integrator Design
	2B. Creating a Zynq System with Interrupts in Vivado
	2C. Creating a Software Application in the SDK
	2D. Adding a Further Interrupt Source

	3. Designing With Vivado HLS
	3A. Creating Projects in Vivado HLS
	3B. Design Optimisation in Vivado HLS
	3C. Interface Synthesis

	4. IP Creation
	4A. Creating IP in HDL
	4B. Creating IP in MathWorks HDL Coder
	4C. Creating IP in Vivado HLS

	5. Adventures with IP Integrator
	5A. Importing IP to the Vivado IP Catalog
	5B. Audio in Vivado IP Integrator
	5C. Creating an Audio Software Application in SDK

