The Zynq Book
Tutorials

for Zybo and ZedBoard

In association with

& XILINX. g

AAAAAAAAAAAAAAAAA Glasgow

The Zynq Book
Tutorials

for Zybo and ZedBoard

Louise H. Crockett
Ross A. Elliot
Martin A. Enderwitz

David Northcote

Series Editors: Louise H. Crockett and Robert W. Stewart

Department of Electronic and Electrical Engineering
University of Strathclyde
Glasgow, Scotland, UK

August 2015

This edition first published August 2015 by Strathclyde Academic Media.
© Louise H. Crockett, Ross A. Elliot, Martin A. Enderwitz and David Northcote.

Open Source Licence to Use and Reproduce

This book is available in print and as an electronic book (PDF format).

Text and diagrams from this book may be reproduced in their entirety and used for non-profit academic purposes, provided that a clear reference to the original
source is made in all derivative documents. This reference should be of the following form:

L. H. Crockett, R. A. Elliot, M. A. Enderwitz and D. Stewart, The Zynq Book Tutorials for Zybo and ZedBoard, First Edition, Strathclyde Academic Media, 2015.
Requests to use content from this book for other than non-profit academic purposes should be made to info@zyngbook.com.

This book may not be reproduced in its original form and sold by any unauthorised third party.

Tutorial Files

Tutorial files are distributed via the book’s companion website: www.zyngbook.com.

Warning and Disclaimer

The best efforts of the authors and publisher have been used to ensure that accurate and current information is presented in this book. This includes researching
the topics covered and developing examples. The material included is provided on an “as is” basis in the best of faith, and neither the authors and publishers make
any warranty of any kind, expressed or implied, with regard to the documentation contained in this book. The authors and publisher shall not be held liable for
any loss or damage resulting directly or indirectly from any information contained herein.

Trademarks

ARM is a registered trademark of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
This publication is independent and it is not affiliated with, or endorsed, sponsored or authorised by ARM Limited.
Xilinx, the Xilinx logo, ISE, Vivado, and Zynq are registered trademarks of Xilinx. All rights reserved.

MATLAB and Simulink are registered trademarks of MathWorks, Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

All other trademarks used in this book are acknowledged as belonging to their respective companies. The use of trademarks in this book does not imply any affil-
iation with, or endorsement of, this book by trademark owners.

http://www.zynqbook.com

Acknowledgements

This is a new version of the tutorials accompanying The Zynq Book. It is based in Vivado 2015.1, and now

supports both the ZedBoard and the Zybo development boards.

A number of people contributed valuable of feedback on the original set of tutorials, on which these are
based. Austin Lesea and Y. C. Wang at Xilinx tested the tutorials at an early stage in their creation, and gave
us several useful suggestions. At the University of Strathclyde, Iain Chalmers, Sarunas Kalade, Damien Muir
and Craig Ramsay have also been greatly helpful in working through various versions of the tutorials and

telling us about their user experiences.

Once again, our sincerest thanks must go to Cathal McCabe of Xilinx University Program, who has not only
provided vital feedback and support in the creation of the tutorial material, but has also coordinated the

distribution of those materials to others.

Louise Crockett, Ross Elliot, Martin Enderwitz, and David Northcote.

August 2015.

How to Use This Book

Example Files and Ebook Version

In order to follow The Zynq Book Tutorials, you should download a set of prepared files from the book’s
website:

www.zyngbook.com

An electronic book (non-printable PDF) version of this set of tutorials can also be downloaded from the

above link.

Instructions for Zybo and ZedBoard Development Boards

As you read through the tutorials, you will notice that certain procedures have different variations
depending on the development board being used. Where a sequence of instructions is board-specific (i.e.

relating either to the ZedBoard or the Zybo), the start of the sequence is indicated by a coloured block icon

in the left hand margin:
m for ZedBoard
for Zybo

The resumption of instructions common to both boards is marked with another icon:

Simply pick out the instructions relevant to your board, by identifying either the m or icon, and
then look forward to find where to m the main flow.

Operating System

The Zynq Book Tutorials have been tested using the Microsoft Windows operating system. It is expected

that they will also function on the Linux Kernel OS, although this has not been tested.

ii

http://www.zynqbook.com

Contents

Creating a First IP INtegrator DESIGNererirerieiernernessensensessessesesssssssessesssssessessessessenses 4
Creating @ Zynq SYSteM iN VIVAOieiinsisinsnsissses 12
Creating a Software Application in the SDKnninsenssssssssssissssssssssssasees 24
Expanding the Basic IP INtegrator DESIGNeneinnisensissnsisssssssssssssssssssssssssssssns 38
Creating a Zynq System with INnterrupts in Vivado ... 42
Creating a Software Application in the SDK ... nrnsessisssisssesssesesessssssssssssssssssses 55
Adding @ FUITher INTEITUPT SOUICEieeeireisiissississssissses 61
Creating Projects in VIvado HLS ... seeiessissseisssssssssessssssssssssssssssssssssssess 70
Design Optimisation in VIVAdo HLSssnsissssisssssssssssssssssssssssssssssssssens 77
INTEITACE SYNTNESIS ettt s s ssss st s s sssesssessssssssssssssssssss 88
CrEAtING IP IN HDL .ueeeeeeeeetiistsissssessessesse e ssssesssnss 94
Creating IP in MathWOorks HDL COAEN ... iiinrininsineissesssssssssssissssssssssssssssssssssssssssssns 118
Creating IP in VIVado HLS ...ttt sssissssessssssesss 128
Importing IP to the Vivado IP Catalognesiensissnsissssssssssssssssssssssssssssenns 140
AUdio iN ViVado IP INTEGIATONoveerireireiiiseiseieiseississeissssssssssesssssssssssssssssssssssssssssssssssssss 150
Creating an Audio Software Application in SDKeevrennrnsssnsnssesssnsssssssssnsenns 166

iii

The Zynq Book Tutorials

First Designs on Zynq

v1.5, June 2015

1

Revision History

Date Version Changes

14/06/2013 1.0 First release for Vivado Design Suite version 2013.1
19/06/2013 1.1 Updated for changes in Vivado Design Suite version 2013.2
27/01/2014 1.2 Updated for changes in Vivado Design Suite version 2013.4
30/04/2014 1.3 Updated for changes in Vivado Design Suite version 2014.1
1/04/2015 1.4 Updated for changes in Vivado Design Suite version 2014.4
13/04/2015 141 ggg%tr?dsﬁtiensgjr(i?oﬁéboa Zi/elopment board for Vivado
18/06/2015 1.5 Updated for changes in Vivado Design Suite Version 2015.1

www.zyngbook.com First Designs on Zynq

Introduction

This tutorial will guide you through the process of creating a first Zynq design using the Vivado™ Integrated
Development Environment (IDE), and introduce the IP Integrator environment for the generation of a
simple Zynq processor design to be implemented on a Zynq development board. The Software Development
Kit (SDK) will then be used to create a simple software application which will run on the Zynq’s ARM

Processing System (PS) to control the hardware that is implemented in the Programmable Logic (PL).
The tutorial is split into three exercises, and is organised as follows:

Exercise 1A - This exercise will guide you through the process of launching Vivado IDE and creating a

project for the first time. The various stages of the New Project Wizard will be introduced.

Exercise 1B - In this exercise, we will use the project that was created in Exercise 1A to build a simple Zynq
embedded system with the graphical tool, IP Integrator, and incorporating existing IP from the Vivado IP
Catalog. A number of design aids will be used throughout this exercise, such as the Board Automation
feature which automates the customisation of IP modules for a specified device or board. The Designer
Assistance feature, which assists with the connections between the Zynq PS and the IP modules in the PL

will also be demonstrated.

Once the design is finished, a number of stages will be undertaken to complete the hardware system and
generate a bitstream for implementation in the PL. The completed hardware design will then be exported to

the Software Development Kit (SDK) for the development of a simple software application in Exercise 1C.

Exercise 1C - In this short third exercise, the SDK will be introduced, and a simple software application will
be created to allow the Zynq processor to interact with the IP implemented in the PL. A connection to the
hardware server that allows the SDK to communicate with the Zynq processors will be established. The
software drivers that are automatically created by the Vivado IDE for IP modules will be explored and
integrated into the software application, before finally building and executing the software application on

the Zyngq.

NOTE: Throughout all of the practical tutorial exercise we will be using C:\Zynq_Book as the working
directory. If this is not suitable, you can substitute it for a directory of your choice, but you should be aware

that you will be required to make alterations to some source files in order to complete exercises successfully.

First Designs on Zynq www.zyngbook.com 3

Exercise 1A: Creating a First IP Integrator Design

In this exercise we will create a new project in Vivado IDE by moving through the stages of the

Vivado IDE New Project Wizard.

The Zybo requires a one time additional set-up procedure in order to set the Default Part
correctly. This is necessary as Vivado 2015.1 does not contain a board part for the Zybo
development board. If you have already configured Vivado 2015.1 with the Zybo board part, you

can skip this procedure and start from Step (a).

Open windows explorer and navigate to the following location within the Zynq book source
files:

C:\Zynq_Book\sources\zybo\setup\board_part

In this directory you will see a file named zybo. This contains the board part for the Rev. B.3
Zybo development board. You may also check the revision of your Zybo by inspecting the
bottom side of your board. Updated board parts can be retrieved from the Digilent Website
using the following link:

https://reference.digilentinc.com/vivado:boardfiles

Copy the zybo file by right clicking on the file and selecting copy as shown below:
Mame

zybo
Open

Open in new window
Send to 4

Cut
Copy

Open a second windows explorer and navigate to the following location in the Vivado 2015.1
installation directory:

{Vivado installation directory}\2015.1\data\boards\board_parts\zynq

This directory is responsible for all the board parts of different Zynq boards that can be used
in the Vivado 2015.1 design suite. We will now be adding the Zybo development board to the

directory. You may find that a file named zybo already exists, ignore this and carry on with the

4 www.zyngbook.com First Designs on Zynq

Exercise 1A: Creating a First IP Integrator Design

following procedure.

Right click on a blank space in the folder and select paste as shown below:

MName
. microzed
) zc702
J zc706

J zed

1ybo
View 3
Sort by 3
Group by 3
Refresh
Customize this folder...
Paste
Paste shortcut
Undo Move Ctrl+Z

A dialogue window may appear asking to merge the incoming folder if a zybo folder currently

exists. Click Yes.

You have now successfully added the Zybo board part to the Vivado 2015.1 Design Suite.
wWe will start by launching the Vivado IDE.

(@) Launch Vivado by double-clicking on the Vivado desktop icon: &‘:;m , or by navigating to Start
> All Programs > Xilinx Design Tools > Vivado 2015.1> Vivado 2015.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 1.1.

VIVADO! ey 8 XILINX

ALL PROGRAMMABLE.

Quick Start
A S ’{]
Create New Project Open Project Open Example Project
Tasks
4 &
[\L:L
Manage IP Open Hardware Manager ¥ilinx Td Store

Information Center

i.iie ii 8 .wﬁ i
Documentation and Tutorials Quick Take Videos Release Notes Guide

Figure 1.1: Vivado IDE Getting Started Screen

First Designs on Zynq www.zyngbook.com 5

Exercise 1A: Creating a First IP Integrator Design

(0

Select the option to Create New Project and the New Project Wizard will open, as in Figure 1.2.

Create a New Vivado Project

V|\/ADO ‘ This wizard will guide you through the creation of & new project.

To create a Vivado project you will need to provide a name and a location
for your project files, Next, you will spedify the type of flow you'l be
working with. Finally, you will specify your project sources and choose a
default part.

XILINX

ALL PROGRAMMABLE. . .
5 To continue, dick Next.

Finish Cancel

Figure 1.2: New Project Dialogue

Click Next.
At the Project Name dialogue, enter first_zynq_design as the Project name and C:/
Zynq_Book as Project location.
Make sure that you select the option to Create project subdirectory. All options should be
the same as shown below:

Project name: | first_zyng_design

Project location: | C:/Zyng_Book E]

Create project subdirectory

Click Next.
A directory named Zynq_Book will be created on your C drive if it did not already exist.
At the Project Type dialogue, select RTL Project and ensure that the option Do not specify
sources at this time is not selected:
@ RILProject

You will be able to add sources, create blodk designs in IP Integrator, generate IP, run RTL analysis,
synthesis, implementation, design planning and analysis.

[7] Do not specfy sources at this time

Click Next.

www.zyngbook.com First Designs on Zynq

Exercise 1A: Creating a First IP Integrator Design

(f) Select VHDL as the Target language and Mixed as the Simulator Language in the Add

Sources dialogue:

Target language: |VHOL ~ | Simulator language: | Mixed

If existing sources, in the form of HDL or netlist files, were to be added to the project they
could be imported at this stage.

As we do not have any sources to add to the project, click Next.

(g) The Add Existing IP (optional) dialogue will open.
If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.
This is the stage where any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) From the Default Part dialogue window,

m Select Boards from the Select dialogue, click ZedBoard Zynq Evaluation and Development
Kit from the Display Name list and All from the Board Rev list, as shown in Figure 1.3. Select

the appropriate revision for your board (in this case Rev. D has been selected).

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Select: & Parts | Boards
4 Filter

Vendor: Al -

Display Name: | ZedBoard Zyng Evaluation and Dev... *

Board Rev: Al -

Reset All Filters

Search:

Display Name Vendor Board Rev Part

B ZedBoard Zyng Evaluation and Development Kit em.avnet.com c© 8 xc7z020dg484-1
B ZedBoard Zyng Evaluation and Development Kit em.avnet.com d 8 xc7z020dg484-1
@ ZedBoard Zyng Evaluation and Development Kit em.avnet.com d % xc7z020dg9484-1

* Zedoard Zynq Evaluation and Development Kitfem.avnet.com|d — [4" xc7z020dg484-1

4 i1

[= Back][Mext =] Finish

Figure 1.3: Zedboard Default Part Dialogue Options

Click Next.

First Designs on Zynq www.zyngbook.com 7

Exercise 1A: Creating a First IP Integrator Design

Select Boards from the Select dialogue, click Zybo from the Display Name list and All from the
Board Rev list, as shown in Figure 1.4. Select the appropriate revision for your board (in this

case Rev. B.3 has been selected).

BT 2 2 22 M

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Select: § Parts | [Boards
4 Filter

Vendor: digilentinc. com -

Display Mame: | Zybo -

Board Rey: Al -

Reset Al Filters

Search:

Display Mame Vendor Board Rev Part

[2bo |dgkninconps |

Figure 1.4: Zybo Default Part Dialogue Options

Click Next.

M (j) Inthe New Project Summary dialogue, review the specified options, and click Finish to create
the project.

Now that we have created our first project in Vivado IDE, we can now move on to creating our first Zynq

embedded system design.

Before doing that, the Vivado IDE tool layout should be introduced. The default Vivado IDE environment
layout is shown in Figure 1.5 (other layouts can be chosen by selecting different perspectives). This layout is
specifically targeted for the Zedboard. If you are using the Zybo, you will see a slightly different layout.

With reference to the numbered labels in Figure 1.5, the main components of the Vivado IDE environment

are:

1. Menu Bar - The main access bar gives access to the Vivado IDE commands.

2. Main Toolbar - The main toolbar provides easy access to the most commonly used Vivado IDE
commands. Tooltips provide information about each command on the toolbar and these can be

viewed by hovering the mouse pointer over the buttons, as shown in Figure 1.6.

8 www.zyngbook.com First Designs on Zynq

Exercise 1A: Creating a First IP Integrator Design

J+ first_zyng_esign - [C/Zynq_Book/first_zynq design/first_zyng_designaxpr] - Vivado 2015
Fle Edit MWw Tools Window Layout Vi'w Help Q.- Search confpands
—_— —
AR oo BB XD b XIS K F (S | 5oefaitayout SR © 1 Ready
Flow Navigator &« | Project Manager - first_zynq_desian X|
5 pig —
[- el —] Sources O & X . Project Summary X | [ENERES
a1 =5
oo . ‘ A= wat R “ Project Settings Edit %
- - "M Design Sources eromectrome: fret P
& Project Settings IS Constrants roject name: rst_zyng_design
3 Add Sources [Simulation Sources Projectlocation: C:/Zyng_Book/first_zyng_design
~Eisim_1 iy -
@ Language Templates = Product family: R
. 4
L 1P Catalog Project part: ZedBoard Zyng Evaluation and Development Kit (xc72020cg4841)
Top module name: Not defined
4 [P Integrator
= Board Part x
47 Create Block Design
¥ Open Biock Design Display name: ZedBoard Zynq Evaluation and Development Kit
Board part name: em.avnet.com:zed:partd: 1.3
& Generate Block Design .
Repository path: C:/XilinxVivado/2015. 1/data/boards /board_files . a
4 Simulation URL: hittp: /fwww.zedboard.org iy
3 Smulation Settings A Board overview: ZedBoard Zynq Evaluation and Development Kit -
v
(i) Run Simulation
Libraries | Compfe Order |
9 EEEE & Sources | 7 Templafes
Elaboration Settings -
] & Properties O x Synthesis # | Implementation %
> [g% Open Elaborated Design
- » k Status: Mot started Status: Not started
4 Synthesis Messages: Mo errors or warnings Messages: Mo errors or warnings
ﬁ Synthesis Settings Part: Xc72020dg484-1 Part: ¥c7z020dg484-1
P run Sydlhesis Strategy: Vivado Synthesis Defaults Strategy: Vivado Implementation Defaults
b @ Open Sy}thesized Design Incremental compile: None
4
e DRC Violations 2 || Timing 2
& Implemeftation Settings Select an object to see ploperties
I Run Impfmentation Run Implementation to see DRC results Run Implementation to see timing results
> B Open Imflemented Design

Y

Program and Deilig
& itstrean) Settings
¥ Generatd Bitstream

P i?‘ Open Halldware Manager

Utilization ES

Run Synthesis to see utilization results Run Implementation to see power results

Constraints Status Progress WHS THS TPWS Failed Routes LUT % LuTs FF % FFs

Notstarted [10%
Notstarted ["]0%

constrs_1
constrs_1

Figure 1.5: Vivado IDE Environment Layout (Zedboard)

;_I b {ﬁl 6 %| ¥, & %DEi’EuItLayuut_

<

Run Synthesis (F11) i
Run synthesis on your project source files.

Figure 1.6: Toolbar tooltips

3. Workspace - The workspace provides a larger area for panels which require a greater screen

space and those with a graphical interface, such as:

o Schematic panel
o Device panel
« Package panel

First Designs on Zynq

www.zyngbook.com

Exercise 1A: Creating a First IP Integrator Design

o Text editor panel

4. Project Status Bar - The project status bar displays the status of the currently active design.

5. Flow Navigator - The Flow Navigator provides easy access to the tools and commands that are
necessary to guide your design from start to finish, starting in the Project Manager section with
design entry and ending with bitstream generation in the Program and Debug section. Run
commands are available in the Simulation, Synthesis and Implementation sections to simulate,

synthesise and implement the active design.

6. Data Windows Pane -The Data Windows pane, by default, displays information that relates to

design data and sources, including:

« Properties window - Shows information about selected logic objects or device resources.
« Netlist window - Provides a hierarchical view of the synthesised or elaborated logic design.

» Sources window - Shows IP Sources, Hierarchy, Libraries and Compile Order views.
7. Status Bar - The status bar displays a variety of information, including:

o Detailed information regarding menu bar and toolbar commands will be shown in the lower

left side of the status bar when the command is accessed.

o When hovering over an object in the Schematic window with the mouse pointer, the object

details appear in the status bar.

« During constraint and placement creation in the Device and Package windows, validity and
constraint type will be shown on the left side of the status bar. Site coordinates and type will

be shown in the right side.

o The task progress of a running task will be relocated to the right side of the status bar when

the Background button is selected.

8. Results Window Area -The Results Window displays the status and results of commands in a
set of windows grouped in the bottom of the Vivado IDE environment. As commands progress,
messages are generated and log files and reports are created. The related information is shown

here. The default windows are:

o Messages - Displays all messages for the active design.

o Tcl Console - Tcl commands can be entered here and a history of previous commands and

outputs are also available.

o Reports - Quick access is provided to the reports generated throughout the design flow.

10 www.zyngbook.com First Designs on Zynq

Exercise 1A: Creating a First IP Integrator Design

« Log -Displays the log files generated by the simulation, synthesis and implementation

processes.
« Design Runs -Manages runs for the current project.

Additional windows that can appear in this area as required are: Find Results window, Timing

Results window and Package Pins window.

With the layout of the Vivado IDE environment introduced, we can now move on to creating the Zynq

system.

First Designs on Zynq www.zyngbook.com 11

Exercise 1B: Creating a Zynq System in Vivado

Creating a Zynq System in Vivado

In this exercise we will create a simple Zynq embedded system which implements a General
Purpose Input/Output (GPIO) controller in the PL of the Zynq device. The GPIO controller will
connect to the LEDs. It will also be connected to the Zynq processor via an AXI bus connection,

allowing the LEDs to be controlled by a software application which we will create in Exercise 1C.

A graphical representation of the Zynq embedded design is provided in Figure 1.7.

//-AXI Connection

ya
ynq AXI GPIO

PS
Zynq PL
Development Board “LEDs

Figure 1.7: Zyng Embedded Design for Exercise 1B

We will begin by creating a new Block Design in Vivado IDE.

(@) Inthe Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 1.8:

Flow Mavigator Ly

o g
pag &

|4 Project Manager
% Project Settings
ﬁ Add Sources
1 F 1P Catalog

4 TP Integrator
4 Create Block Design

inn
Create Block Design
Create and add an IP subsystemn to the project

Figure 1.8: Creating a new Block Design in Flow Navigator

The Create Block Design dialogue will open.

12 www.zyngbook.com First Designs on Zynq

Exercise 1B: Creating a Zynq System in Vivado

(b) Enter first_zynq_system in the Design name box, as in Figure 1.9:

4 Create Block Design

Please specfy name of block design.

Design name: first_zyng_system
Directory: [# <Local to Project>

Specify source set: | Design Sources

Figure 1.9: Create Block Design dialogue
Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.
The first block that we will add to our design will be a Zynq Processing System.

(c) Inthe Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

1.10.

Alternatively, select the Add IP button in the toolbar at the left of the canvas, shown in Figure

1.11.

@ Ctrl+E

X Delete

e Ctrl+C

e} Ctrl+V ":::l

o, Ctrl+F -:]\

I Select Al Crl+A -

{# AddIP... Ctrl+I E

it IP Settings... iy

[validate Design F6 -
Create Hierarchy. ..
Create Comment D-';'
Create Port... Ctrl+ K L
Create Interface Port... Ctrl+L I

& Regenerate Layout L@

T Save as POF File... %

Figure 1.10: Add IP Option Figure 1.11: Add IP option in IP Integrator

canvas information message

First Designs on Zynq www.zyngbook.com 13

Exercise 1B: Creating a Zynq System in Vivado

The pop-up IP Catalog window will open, as in Figure 1.12.

Search: |

{} 1G/2.5G Ethernet PCS/PMA or SGMII -
4® 20 Graphics Accelerator Bit Block Transfer
{F 3GPP LTE Channel Estimator

{F 3GPP LTE MIMO Decoder

iF 3GPP LTE MIMO Encoder

{F 3GPPLTE Turbo Encoder

{F 3GPP Mixed Mode Turbo Decoder

{F 3GPP Turbo Encoder

{F 10G Ethernet MAC

{F Accumulator

{F adder/subtracter

{F AHBAite to AXI Bridge

4% audio 125 Transmitter Receiver

iF AXI-Stream FIFO

{F AXI 1G/2.5G Ethernet Subsystem

{F A¥I4-Stream Accelerator Adapter

{F Ax14-Stream Broadcaster

{F A¥14-5tream Clock Converter

{F Ax¥14-5tream Combiner

iF A¥14-Stream Data FIFO

{F A¥14-5tream Data Width Converter

{F AxI4-Stream Interconnect

{F Aax14-Stream Protocol Checker

{F A¥I14-Stream Register Slice —
{F AX¥I4-5tream Subset Converter =

EMTER. to select, ESC to cancel, Ctrl+Q for IP detzils

m

Figure 1.12: Pop-up IP Catalog Window

(d) Enter zyngq in the search field and select the ZYNQZ7 Processing System, as shown in Figure

1.13. Be careful not to select the BFM version and press the Enter key on your keyboard.

Search: zynq| (2 matches)

ZYMNQ7 Prncessing stem BFM

Figure 1.13: Adding ZYNQ7 Processing System from IP CatalogCatalog

You should see a similar message to the following in the Tc/ Console window to confirm that
the processing system has indeed been added to the design correctly:

create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.5
processing system7_0

Messages like this will be displayed in the Tc/ Console window for all actions carried out on IP

Integrator blocks.

The next step is to connect the DDR and FIXED_IO interface ports on the Zynq PS to the top-level

interface ports on the design.

14 www.zyngbook.com First Designs on Zynq

Exercise 1B: Creating a Zynq System in Vivado

(e) Click the Run Block Automation option from the Designer Assistance message at the top of

the Diagram window, as shown in Figure 1.14.

B first_zyng_system

I_a Designer Assistance available.l Run Block .ﬂ.ub:umaﬁnn!

Figure 1.14: Run Block Automation - Processing System

m In the Run Block Automation dialogue, ensure that the option to Apply Board Preset is
selected and click OK. The external connections for both the DDR and FIXED_IO interfaces
will now be generated.

Your block diagram should now resemble Figure 1.15.

processing_system7_0

-,

PTP_ETHERNET 0 |||

DDR o ||| ™ DDR
FIXED_1O4k ||p==—==f "} FIXED_IO
USBIND_0+- |||
- M_AXI_GPO<= [
MAXLGPOACK ZNYNIQ). ™ reo_waven_outh
TTCO_WAVEL_OUT =
TTCO_WAVE2_OUT =
FCLK_CLKD =
FCLK_RESETO_N =

ZYNQ7? Processing System

Figure 1.15: Zedboard ZYNQ?7 Processing System External Connections

As the ZedBoard platform is the target development board, and this was specified on

creation of the project, Vivado will configure the Zynq processor block accordingly.
In the Run Block Automation dialogue, ensure that the option to Apply Board Preset is

selected and click OK. The external connections for both the DDR and FIXED 10O interfaces

will now be generated.

First Designs on Zynq www.zyngbook.com 15

Exercise 1B: Creating a Zynq System in Vivado

Your block diagram should now resemble Figure 1.

processing_system7_0

PTP_ETHERNET O 4F
DDR =R

FIXED 10<F
SDID_0<F
USBIND_0O4F

TTCO_WAVED_OUT
TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_NM

ZYNQ7 Processing System

M_AXI_GPO_ACLK ZYNQ‘ M_AXL PO [

16.

I
| DDR

| " FIXED_IO
l
u

Figure 1.16: Zybo ZYNQ?7 Processing System External Connections

As the Zybo platform is the target development board, and this was specified on creation of

the project, Vivado will configure the Zynq processor block accordingly.

MNOW that the main Zynq PS has been added to our design and configured, we can now add
further blocks which will be placed in the PL to add functionality to the system. In this case we will

only be adding a single block, AXI GPIO, to allow us to access the LEDs on the development

board.

(f) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the

search field and add an instance of the AXI GPIO |P.

We will now use the IP Integrator Designer Assistance tool to automate the connection of the AXI

GPIO block to the ZYNQ7 Processing System.

16 www.zyngbook.com

First Designs on Zynq

Exercise 1B: Creating a Zynq System in Vivado

(g) Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 1.17.

ﬁ""_ Run Connection Automaticn

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its
configuration options on the right.

Q| =+ l all .-'-\uTJJm..aﬁon. (1 out of 2 selected) Description
= =W £F axi_agpio_0
== {il GPIO Connect Slave interface (faxi_gpio_0/5_AXI) to a selected Master address space.
{—3—; BT m
Options
Master: [processing_system7_0/M_AXI_GPO

Clock Connection (for unconnected cks) : | Auto

] | Cancel

Figure 1.17: Run Block Automation - GPIO Block

This will automate the process of connecting the GPIO to an AXI port, and

instantiate two further IP blocks:

will automatically

« Processor System Reset Module - This provides customised resets for an entire

processing system, including the peripherals, interconnect and the processor itself.

« AXlInterconnect - Provides an AXI interconnect for the system, allowing further IP and

peripherals in the PL to communicate with the main processing system.

Click OK.

All connections between the blocks should be made automatically.

(h) One final connection is required to connect the AXI GPIO block to the LEDs on the

development board. This can also be completed using Designer Assistance.

m Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window. The Run Connection Automation dialogue will open, as shown in Figure

1.18.

First Designs on Zynq www.zyngbook.com

17

Exercise 1B: Creating a Zynq System in Vivado

Select /axi_gpio_0/GPIO.

ﬁ""_ Run Connection Automation

@, | =-{¥] All Automation (1 out of 1 selected)
E}-- 1F axi_agpio_0

=A
[==]
==

Automatically make conmections in your design by checking the boxes of the interfaces to conmect.
Select an interface on the left to display its configuration options on the right.

Description

Connect Board Part Interface to IP interface.
Interface: faxi_gpio_0/GPIO
Options

Select Board Part Interface: | leds_8hits

[Ok ” Cancel]

|

Figure 1.18: Zedboard Run Connection Automation Dialogue - GPIO Block

Select leds_8bits from the Select Board Part Interface drop-down menu, and click OK.

The gpio interface of the AXI GPIO block will now be connected to the LEDs on the

development board, and your complete design should resemble Figure 1.19.

processing_system7_0_axi_periph

rst_processing_system?7_0_100M

|4 S00_AXI
lowest_sync_ck mb_reseti- H——ACLK o
: reset_in bus_struet_reset[0:0] m ETN E—E 2xi_gpio_0
—laux_reset_in peripheral_reset[0:0] ACLK D§D MOO_AXI 4=
—mb_debug sys_rst interconnect_aresetn[0:0] _ARESETN [11£3 GPIO 4 ||pe{ ™ ledls_8bits
=dem_locked peripheral_aresetn[0:0]| MOO_ACLK 8

M_AXI_GPO<
TTCO_WAVED_OUT|
TTCO_WAVEL_OUT|
TTCO_WAVE2_OUT|

FCLK_CLKI
FCLK_RESETO_N

M AXI_GPO_ACLK ZYNO‘

ZYNQ7 Processing System

100_ARESETN
Processor System Reset AXI GPIO
processing_system?_0 AXI Interconnect
PTP_ETHERNET_0
DDRF { > DDR
FIXED_IO< [FIXED_IO
USBIND_0<¢

Figure 1.19: Zedboard, Zynq Processor System

The positions of the individual IP blocks in your design may vary slightly from Figure 1.19, but

the blocks and their connections should be the same.

Click Run Connection Automation from the Designer Automation message at the top of the

Diagram window. The Run Connection Automation dialogue will open, as in Figure 1.20.

18

www.zyngbook.com

First Designs on Zynq

Exercise 1B: Creating a Zynq System in Vivado

Select /axi_gpio_0/GPIO.

Automatically make connections in your design by checking the boxes of the interfaces to connect.
Select an interface on the left to display its configuration options on the right.

a, [=-{7] All Automation (1 out of 1 selected)

T Description
=+ £F axi_gpio_0

Connect Board Part Interface to IP interface.
Interface: faxi_gpio_0/GPIO
Options

Select Board Part Interface: |leds_dbits

OK ” Cancel]

Figure 1.20: Zybo Run Connection Automation Dialogue - GPIO Block

Select leds_4bits from the Select Board Part Interface drop-down menu, and click OK.

The gpio interface of the AXI GPIO block will now be connected to the LEDs on the

development board, and your complete design should resemble Figure 1.21.

processing_system7_0_axi_periph
rocessing_system/_J_axl_perp
+
rst_processing_system7_0_100M — gsoo_Axl
lowest_sync_dk mb_reset, = ACLK
ext_reset_in bus_struct_reset[0:0] RESETN [l axi_gpio 0
m—aix_reset_in peripheral_t : | S00_ACLK D%mmu,mqp
—mb_debug_sys_rst _armtn[o:ol} 00_ARESETN [GPIO = || leds_4bits
=dcm_locked peripheral_aresetn[0: MOD_ACLK
J MOO_ARESETN
Processor System Reset AXI GPIO
processing_system?7_0

AXT Interconnect

PTP_ETHERNET 04
DDR 4 DDR
FIXED_I04F 3 FIXED_IO
SDIO_04

- USBIND 0+
L —IM_AXI_GPO_ACLK ZYNO WCDM;::I E;;Pg j:; -
TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_Np=—1

ZYNQ7 Processing System

Figure 1.21: Zybo, Zynq Processor System

The positions of the individual IP blocks in your design may vary slightly from Figure 1.21, but

the blocks and their connections should be the same.

MIP Integrator will automatically assign a memory map for all IP that is present in the design. We

will not be changing the memory map in this tutorial, but for future reference we will take a look
at the Address Editor.

First Designs on Zynq www.zyngbook.com 19

Exercise 1B: Creating a Zynq System in Vivado

(i) Selectthe Address Editor tab from the top of the Workspace window, as shown in Figure 1.22,

and expand the Data group.

ZoDiagram % | [E Address Editor >

Q| cal Interface Pin Base Mame Offset Address Range High Address
tz_:,' -I-{F processing_system7_0

F&—} —I- B Data (32 address hits @ 4G)

4 ‘- wm axi_gpio_0 5_AXI Reqg 0x41200000 64K + 0x4120FFFF

[

Figure 1.22: Address Editor Tab

You can see that IP Integrator has already assigned a memory map (the mapping of specific
sections of memory to the memory-mapped registers of the IP blocks in the PL) to the AXI

GPIO interface, and that it has a range of 64K.

Now that our system is complete, we must first validate the design before generating the HDL

design files.

(j) Save your design by selecting File > Save Block Design from the Menu Bar.

(k) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a
Design-Rule-Check (DRQ).
Alternatively, select the Validate Design button, [}, from the Main Toolbar, or right-cick

anywhere in the Diagram canvas and select Validate Design.

(I) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK to dismiss the message.

With the design successfully validated, we can now move on to generating the HDL design files

for the system.

(m) Switch to the Sources Tab by selecting Window > Sources from the Menu Bar.

20 www.zyngbook.com First Designs on Zynq

Exercise 1B: Creating a Zynq System in Vivado

(n) In the Sources window, right-click on the top-level system design, which in this case is

first_zynq_system, and select Create HDL Wrapper, as shown in Figure 1.23.

Sources — 0O 2 =

':-\E{_i_ﬂ] 3‘(}4}? :E

=I-t5 Design Sources (1]
- N fir=t 7vna svstem (first zvnag svste
1 & Sowurce Mode Properties... Ctrl+E

* (Open File Alt+0

Create HDL Wrapper...

Viewy Inet-—~*igtine -

Figure 1.23: Create HDL Wrapper

The Create HDL Wrapper dialogue window will open. Select Let Vivado manage wrapper and

auto-update, and click OK.

This will generate the top level HDL wrapper for our system.

All of the source files for the IP blocks that were used in the IP Integrator block diagram, as
well as any relevant constraints files, will be generated during the synthesis process. As we
specified VHDL as the target language when creating the project in Exercise 1A, all generated

source files will be VHDL.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(0) In Flow Navigator, click Generate Bitstream from the Program and Debug section. If a

dialogue window appears prompting you to save your design, click Save.

4 Program and Debug
fﬁ; Bitstream Settings
I %] Generate Bitstream I

> ‘b Open Hardware Manager

(p) A dialogue window will open requesting that you launch synthesis and implementation
before starting the Generate Bitstream process. Click Yes to accept.
The combination of running the synthesis, implementation and bitstream generation
processes back-to-back may take a few minutes, depending on the power of your computer

system.

First Designs on Zynq www.zyngbook.com 21

Exercise 1B: Creating a Zynq System in Vivado

(g) Once the bitstream generation is finished, a dialogue window will open to inform you that

the process has been completed successfully, as in Figure 1.24.

Bitstrearm Generation Completed | 23 |

Iol Bitstream Generation successfully completed.

Mext

@ Dpen Implemented Desigré

) View Reports

") Open Hardware Manager

[] Don't show this dialog again

l OK ” Cancel I

L~

Figure 1.24: Bitstream Generation Completed Dialogue Window

Select Open Implemented Design, and click OK.
At this point you will be presented with the Device view, where you can see the PL resources

that are utilised by the design. With the default colour scheme, these are shown in light blue.

With the bitstream generated, the building of the hardware image is complete. It must now be
exported to a software environment where we will build a software application to control and

interact with the custom hardware.

The final step in Vivado is to export the design to the SDK, where we will create the software

application that will allow the Zynq PS to control the LEDs on the development board.

(r) Select File > Export > Export Hardware... from the Menu Bar.

(s) The Export Hardware dialogue window will open. Ensure that the option to Include bitstream
is selected, as in Figure 1.25, and Click OK.

e M=

Export hardware platform for software development

tools. ‘

ind

Export to: | 5 <Local to Project>

Figure 1.25: Export Hardware for SDK

22 www.zyngbook.com First Designs on Zynq

Exercise 1B: Creating a Zynq System in Vivado

NOTE: For the option to Include bitstream to be enabled, an implemented design must be

active. This is the reason that we opened the implemented design in Step (q).

(t) Launch the SDKin Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

This concludes the steps that are required in Vivado IDE. All hardware components of the system
have been configured and generated. In the next exercise we will move on to creating a simple

software component which will control the system.

First Designs on Zynq www.zyngbook.com 23

Exercise 1C: Creating a Software Application in the SDK

24

In this exercise we will create a simple software application which will control the LEDs on the
Zynq development board. The software application will run on the Zynq processing system and
communicate with the AXI GPIO block which is implemented in the PL. We will take a look at the
software drivers that are created by IP Integrator for each of the IP modules, before building and

executing the software on the development board.

The SDK should have opened after the conclusion of Exercise 1B. If it did not open, you can open

the SDK by navigating to Start > All Programs > Xilinx Design Tools > SDK 2015.1 > Xilinx SDK

2015.1

When launching the SDK from the start menu, you will need to specify the workspace that was

created when the Vivado IP Integrator design was exported in Exercise 1B. It should be:
C:\Zynq_Book\first_zynq_design\first_zynq_design.sdk

Enter this in the Workspace field of the Workspace Launcher dialogue window, as shown in Figure

1.26.

pEm—— e

Select a workspace

Xilinx SDK stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session.

Workspace: ChZyng_Book\first_zynqg_design‘first_zyng_design.sdk -

[7] Use this as the default and do not ask again

Figure 1.26: SDK Workspace Launcher Dialogue Window

With the SDK open, we can begin the creation of our software application. You will already be
able to see the Hardware Platform Project, which will be automatically created and opened. It is

now necessary to add an Application Project and a Board Support Package.

(@) Select File > New > Application Project from the Menu bar.

(b) The New Project dialogue window will open. Enter LED_test in the Project name field, as
shown in Figure 1.27, keeping all other options with the default settings. Click Next (Be

careful not to select Finish).

www.zyngbook.com First Designs on Zynq

Exercise 1C: Creating a Software Application in the SDK

Application Project

Create a managed make application project.

Project name: LED_test
Use default location
Location: | C\Zynq_Book\first_zyng_design\first_zynq_design.sdk\LED test Browse...

Choose file systern: | default

05 Platform: [standalone ']
Target Hardware

Hardware Platform: [first,z_vn:Lsystem,wrapper,hw,platformj v] [New]
Processor: [psi_cortexad 0 -]
Target Software

Language: @C @ C++

Board Support Package: @ Create New LED _test_bsp

Use existing

@ <Back | Net> |[Finish |[Cancel |

Figure 1.27: New Application Project Dialogue

(c) At the New Project Templates screen, select Empty Application, as in Figure 1.28, and click

Finish to create the project.
e,

Templates

Create one of the available templates to generate a fully-
functiening application project.

Available Templates:

Peripheral Tests Ablank C project.
Dhrystone

Iﬁ. by Application |
Hello Warld

wIP Echo Server

Memory Tests

RSA Authentication App

SREC Bootloader

SREC 5PI Bootloader

Kilkernel POSIX Threads Demo

Zyng DRAM tests

Zyng FSBL

@ net> | [Finish [cancel |

Figure 1.28: New Project Template Dialogue

NOTE: the new project should open automatically. If it doesn’t, you may need to close the

Welcome tab in order to view the project.

First Designs on Zynq www.zyngbook.com 25

Exercise 1C: Creating a Software Application in the SDK

With the new Application Project created, we can now import some pre-prepared source code for

the application.

(d) Inthe Project Explorer panel, expand LED_test and highlight the src directory. Right-click and
select Import..., as shown in Figure 1.29.

[Project Explorer &2 =l <f;>| ¥ Y= O
> (¥ first_zynq_system_wrapper_hw_platform_0
4 =5 LED test
> [Includes
> |2 Sh
. M LEDtd New ’
Go Into

Open in New Window

Copy Ctrl+C

|{':|||"

Paste Ctrl+V

3 Delete Delete
Source 3
Move...

Rename... F2

Iﬁg Import...
Ly Export...

Figure 1.29: Import Source Files to Project

(e) The Import window will open. Expand the General option and highlight File System, as in
Figure 1.30, and click Next.
Select

Import resources from the local file system into an existing I ? N 5 i
project,

Select an import source:

type filter text

4 [= General
[E, Archive File
= Existing Projects into Workspace
[:L File System
E Preferences
» = CfC+e
s+ [Install
> [~ Remote Systems
=% Run/Debug
> = Team

Figure 1.30: Import File System

26 www.zyngbook.com First Designs on Zynq

Exercise 1C: Creating a Software Application in the SDK

(f) Inthe Import File System window, click the Browse... button.

The source file directory will depend on the Zynq development board that is in use. If you are

using the Zedboard, navigate to: C:\Zynq_Book\sources\zedboard\first_zynq_design. If you

are using the Zybo, navigate to C:\Zynq_Book\sources\zybo\first_zynq_design

Click OK.

(g) Select the file LED_test_tut_1C.c, as shown in Figure 1.31, and click Finish.

File system

Import resources from the local file system.

-
From directory: C\Zynqg_Book\sources\first_zyng_design

(= first_zyng_design

[€] LED test_tut_1C.c

| Filter Types... || SelectAll || Deselectan |

Into folder: LED _test/src

Browse...

Options
[”] Overwrite existing resources without warning

["] Create top-level folder

@ nec> | [Finish | [Cancel

Figure 1.31: Import C Source File

The C source file will be imported and the project should automatically build. You should see

a similar message to Figure 1.32 in the Console window.

First Designs on Zynq

www.zyngbook.com 27

Exercise 1C: Creating a Software Application in the SDK

[Z1 Problems | ¥ Tasks | &l Console 52 | I Properties| & Terminal

L o@B EB=E& #B-r9-= 0

CDT Build Console [LED_test]
16:47:37 **** pAyto Build of configuraticn Debug for project LED test **+*

make all

"Building file: ../src/LED_test_tut_1C.c’

"Invoking: ARM gcc compiler’

arm-xilinx-eabi-gcc -Wall -08 -g3 -c -fmessage-length=8 -MT"src/LED_test_tut_1C.o" -I../../LED_test_bsp/ps7_cortexad_@/include
'Finished building: ../src/LED_test_tut_1C.c’

"Building target: LED test.elf’

"Invoking: ARM gcc linker’

arm-xilinx-eabi-gcc -W1,-T -Wl,../src/lscript.ld -L../../LED_test_bsp/ps7_cortexa® @/1ib -o "LED_test.elf"™ ./src/LED test_tut
"Finished building target: LED test.elf’

"Invoking: ARM Print Size’
arm-xilinx-eabi-size LED test.elf |tee "LED test.elf.size"

text
23634

data bss dec hex filename
1168 22538 474352 b348 LED test.elf

"Finished building: LED test.elf.size®

16:47:38 Build Finished (took 828ms)

28

Figure 1.32: Build Finished Console Message

(h) Open the imported source file by expanding the src folder and double-clicking on

LED_test_tut_1C.c, and explore the code.

Note the command XGpio Initialize(&Gpio, GPIO DEVICE ID); Thisis afunction
provided by the GPIO device driver in the file xgpio. h. It initialises the XGpio instance, Gpio,
with the unique ID of the device specified by GPIO_DEVICE_ID.

If you look toward the top of the source file you will see that GPIO_DEVICE_ID is defined as
XPAR_AXI_GPIO @ DEVICE_ID. The value of XPAR_AXI_GPIO © DEVICE _ID can be
found by opening the file, xparameters. h, which is automatically generated by Vivado IDE
when exporting a hardware design to the SDK. It contains definitions of all the hardware
parameters of the system.

The function, XGpio_SetDataDirection(&Gpio, LED_CHANNEL, ©xFF); is also
provided by the GPIO device driver, and sets the direction of the specified GPIO port. As we
are specifying the LEDs in this case, it is specifying an output. Bits set to ‘0" are output, and
bits set to ‘1" are input. As there are 8 LEDs on the Zedboard, by setting the LED channel
direction to a value of ©x00, or 990000000 in binary, we are setting all 8 LEDs as outputs.
Similarly as there are 4 LEDs on the Zybo board, by setting the LED channel direction a value
of ©x0 or 8000 in binary, we are setting all 4 LEDs as outputs.

Further information on the peripheral drivers can be found by selecting the system.mss tab.
A list of all the peripherals in the system is provided, along with links to available

documentation and examples, as shown in Figure 1.33.

www.zyngbook.com First Designs on Zynq

Exercise 1C: Creating a Software Application in the SDK

[system.hdf [€) LED_test tut 1C.c

Target Information

This Board Support Package is compiled to run on the following target.

Hardware Specification: C:\Zyng_Book\first_zyng_designfirst_zyng_design.sc
Target Processor: ps7_cortexad_0

Operating System

Board Support Package OS5,
Mame: standalone
Version: 5.0

Description: Standalone is a simple, low-level software layer. It provides a
environment, such as standard input and ocutput, profiling, a
Documentation: standalone w5 0

Peripheral Drivers

Dirivers present in the Beard Suppoert Package,

axi_gpie_0 gpio Documentation Import Examples
ps7_afi_0 generic
ps7_afi_l generic
ps7_afi_2 generic
ps7_afi_3 generic

psT_coresight_coemp_ coresightps_dcc
psT_ddr_0 generic
ps7?_ddrc_{ generic

psi_dev_cfg 0 devcfg Documentation Import Examples
ps7_dma_ns dmaps Documentation Import Examples
psi_dma_s dmaps Documentation Import Examples
psT_ethernet 0 emacps Documentation Import Examples

psT_globaltimer_ 0 generic

psT_gpie_0 gpiops Documentation Import Examples

psl_gpv_0 generic
psi_intc_dist 0 generic
psi_iop_bus_config_0 generic
psi_l2cachec 0 generic
ps?_ocmc_ () generic
psi_pl210_0 generic
ps?_pmu_) generic
psi_gspi 0 gspips Documentation Import Examples
psT_gspi_linear 0 generic
ps7_ram_0 generic
ps7_ram_l generic
psT?_scuc_{ generic

psi_scugic 0 scugic Documentation Import Examples
psi_scutimer_0 scutimer Documentation Import Examples
psT_scuwdt_0 scuwdt Documentation Import Examples
ps?_sd_0 sdps Documentation
ps?_sler 0 generic
psT_ttc 0 ttcps Documentation Import Examples
ps7_uart 1 vartps Documentation Import Examples
psT_ush 0 ushps Documentation Import Examples
psT_xadc_0 xadcps Documentation Import Examples

Figure 1.33: Peripheral Documentation and Drivers in system.mss tab

The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 1B.

First Designs on Zynq www.zyngbook.com 29

Exercise 1C: Creating a Software Application in the SDK

(i) Ensure that the Zynq development board is powered on and that the JTAG port is connected
to the PC via the provided USB-A to USB-B cable. Additionally the board jumpers must also

be correctly set so that to enable JTAG mode, which allows the hardware to be programmed

and access for system debugging tools.

m The Zedboard requires five jumpers to be set as shown in Figure 1.34. This configuration will
enable JTAG mode.

JTAG Mode

3V3

o
5 & & =
O00O0

SIG
BEBA -

JTAG Port

@@O|»

N‘ JU U \)] 5
UART Port| | ,
, B e -
)
=
: =
CEIRERY :
5 o s § .
2] &) (I}
} th -
25
= % - S
I ,_@%% B @@%@" /\DIGILENT
e WD S
-
= ;
= TR HERRRE
P
=
USB Port 5 & 7 S
e N B
e »¢é§:§§§ = 5
85888 & = 50
= =
. =
)
dl St o [T 4 §e
Dﬂo .ﬂo > 3
- Q o
o g
O N0 IS
o=
& o, &)

Figure 1.34: Zedboard JTAG Jumper Configuration

30 www.zyngbook.com First Designs on Zynq

Exercise 1C: Creating a Software Application in the SDK

One jumper is set to enable JTAG mode on the Zybo development board. Additionally the

board’s power supply is set using a jumper with the possibility of receiving power from USB,

wall or battery. Both JTAG and power jumper configurations are set in Figure 1.35. The board

has been set to receive power from USB.

JTAG & UART
Port

USB Port

First Designs on Zynq

Power Set-up

JP7
WALL O
VU5VO O GND
USB

"r U g H H SD MICRO
Z__\X_DIG:IL‘ENT‘
< o S > v B0
i i n ks T 8_ :

;n ::b. e o Ry ok

: ! i

H A5

i H

Blcss

JTAG Mode

JP5

9]0 010

o)
()

QSPI
JTAG

i
QC.0K

VGA

HPH OUT

[MIC IN

LINE IN

Figure 1.35: Zybo JTAG and Power Jumper Configurations

www.zyngbook.com

31

Exercise 1C: Creating a Software Application in the SDK

m (j) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the
Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 1.36.

T .

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: ’first_zynq_system_wrapper_hw_platform_t] VI

Connection: ’Local v” Mew l

Device: Auto Detect
Bitstrearm: first_zyng_system_wrapper.bit Browze..

BMM/PAMI File: Search... | | Browse..

Software Configuration
Processor ELF File te Initialize in Block RAM

[Pragram]’ Cancel

Figure 1.36: Program FPGA dialogue Window

NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard
will turn blue. Similarly the DONE LED on the Zybo will turn green.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.

32 www.zyngbook.com First Designs on Zynq

Exercise 1C: Creating a Software Application in the SDK

(k) Select the project LED_test in Project Explorer. Right-click and select Run As > Launch on
Hardware (GDB) as in Figure 1.37.

[Project Explorer &2 == |
> (3 first_zyng_system_wrapper_hw_platform_0
5 [25 LED_test
s @ LED _test, Mew 3
Go Into

Open in New Window

Copy Ctrl+C
Paste Ctrl+V
Delete Delete

i

Source 3
Move...

Rename... F2

Import...
Export...

C. &

Build Project
Clean Project
Refresh F5

f?

Close Project
Close Unrelated Projects

Build Configurations 3
Make Targets 3

Index 3

Show in Remote Systems view
Profiling Tools 3
Convert To...
Profile As
Debug As
Run As

1 Launch on Hardware (GDE)
2 Launch on Hardware (System Debugger on QEMU)

Team

* v v ¥ ¥

Compare With = 3 Launch on Hardware (System Debugger)

TLF
ﬁ Target Conn Restore from Local History... E 4 Local C/C++ Application

A 5 Remote ARM Linux Application
=]

6 Start Performance Analysis

A Local [d 2 Create Boot Image
> & Auto Dis i}, Change Referenced BSP
Tl Generate Linker Script Run Configurations...

Figure 1.37: Launch Application onto the Zynq Development Board

m After a few seconds the LEDs on the ZedBoard should begin to flash between the states
highlighted in Figure 1.38.

State A:

) MG |

State B:

A THRR X

Figure 1.38: Zedboard LED Flashing States

First Designs on Zynq www.zyngbook.com 33

Exercise 1C: Creating a Software Application in the SDK

The LEDs on the Zybo should begin to flash between the states highlighted in Figure 1.39

State A:

iR

State B:

AR

Figure 1.39: Zybo LED Flashing States

MYOU have successfully created and executed your first software application on the Zynq

processing system.

In summary a GPIO controller has been successfully implemented in the FPGA fabric of the Zynq
device, forming a connection between the Zynq Processing System and the development board
LEDs via an AXl interface. The Zynq Processing System was then programmed to control the LEDs
by means of a standalone software application with the capability to interface with the GPIO

controller in the FPGA fabric.

34 www.zyngbook.com First Designs on Zynq

The Zynq Book Tutorials

Next Steps in Zynq SoC Design

vl.4, June 2015

35

Revision History

36

Date Version Changes
13/09/2013 1.0 First release for Vivado Design Suite version 2013.2
27/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4
30/04/2014 1.2 Updates for changes in Vivado Design Suite version 2014.1
08/04/2015 1.3 Updated for changes in Vivado Design Suite version 2014.4
29/04/2015 131 ggggtsds Loit:en\c/:gjr(i?eoﬁyzb& ii/elopment board for Vivado
19/06/2015 14 Updated for changes in Vivado Design Suite version 2015.1

www.zyngbook.com Next Steps in Zynq SoC Design

Introduction

This tutorial will guide you through the process of creating a Zynq design utilising interrupts. Using the
Vivado™ Integrated Development Environment (IDE) and the IP Integrator environment, a simple Zynq™
processor design, to be implemented on a Zynq development board, will be generated. The Software
Development Kit (SDK) will then be used to create a simple software application which will run on the
Zynq’s ARM Processing System (PS) to control the hardware that is implemented in the Programmable

Logic (PL). This tutorial leads on from the previous one, expanding on the skills acquired in it.
The tutorial is split into four exercises, and is organised as follows:

Exercise 2A — This exercise provides a further guide to the process of launching Vivado IDE and creating

a project using New Project Wizard.

Exercise 2B — In this exercise, we will use the project that was created in Exercise 2A to build a Zynq
embedded system utilising interrupts with IP Integrator and incorporating existing IP from the Vivado IP
Catalog. This will expand on previous knowledge gained in creating and connecting a block based system in
IP Integrator. The completed design will have an associated bitstream generated and will be exported to the

Xilinx SDK to participate in a test application.

Exercise 2C — In the Xilinx SDK, a test software application for the generated hardware system will be
created and explained. Running this application on a Zynq development board will demonstrate the

function of interrupts and how the application is coded to utilise them.

Exercise 2D — Finally, we will return to the system from Exercise 2B and include an additional source of
interrupt, making the necessary connections, generating a bitstream and exporting to the Xilinx SDK. We

will then modify our previous software application to inspect the operation of the altered system.

Next Steps in Zynq SoC Design www.zyngbook.com 37

Exercise 2A: Expanding the Basic IP Integrator Design

In this exercise we will expand upon the previous project in Vivado IDE by adding additional GPIO

and configuring the system to utilise interrupts. For the sake of clarity and understanding, we will

run through the building of a basic system once more. Start by launching the Vivado IDE.

4

(@) Launch Vivado by double-clicking on the Vivado desktop icon: @;@ , or by navigating to

Start > All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado 2015.1

(b) When Vivado loads, you will be presented with the Getting Started screen as in Figure 2.1.

VlVADO' Productivity. Multiplied

Quick Start
A\ ¢ |
=W =
Create New Project Open Project
Tasks
[
Manage IP Open Hardware Manager

Information Center

Documentation and Tutorials Quick Take Videos

Figure 2.1: Vivado IDE Getting Started screen

38 www.zyngbook.com

Open Example Project

Release Notes Guide

XILINX

ALL PROGRAMMABLE.

Next Steps in Zynq SoC Design

(@)

Exercise 2A: Expanding the Basic IP Integrator Design

Select the option to Create New Project as in Figure 2.2.

Create a New Vivado Project

V | \/ADO ‘ This wizard will guide you through the creation of a new project.

To create a Vivado project you will need to provide a name and a location
for your project files. Next, you will specify the type of flow you'l be
working with. Finally, you will specfy your project sources and choose a
default part.

XILINX

a = . .
e To continue, dick Mext.

Finish Cancel

Figure 2.2: New Project dialogue

Click Next.

At the Project Name dialogue, enter zynq_interrupts as the Project name and C:/Zynq_Book
as Project location.

Make sure that you select the option to Create project subdirectory. All options should be

the same as shown below:

Project name: | zyng_interrupts
Project location: | C:/Zyng_Book E]
Create project subdirectory

Project will be created at: C:/Zyng_Book/zyng_interrupts

Click Next.
A directory named Zynq_Book will be created on your Cdrive if it did not already exist.
At the Project Type dialogue, select RTL Project and ensure that the option Do not specify

sources at this time is not selected:

i@ ETL Project
You will be able to add sources, generate IF, run RTL analysis, synthesis,
implementation, design planning and analysis.

|| Do not specify sources at this time

Click Next.

Next Steps in Zynq SoC Design www.zyngbook.com 39

Exercise 2A: Expanding the Basic IP Integrator Design

(f)

40

Select VHDL as the Target language and Mixed as the Simulator Language in the Add

Sources dialogue:

Target language: |VHDL + | Simulator language: | Mixed -

If existing sources, in the form of HDL or netlist files, were to be added to the project they
could be imported at this stage.

As we do not have any sources to add to the project, click Next.

The Add Existing IP (optional) dialogue will open.

If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

The Add Constraints (optional) dialogue will open.

This is the stage where any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

From the Default Part dialogue,

Select Boards from the Specify box and choose ZedBoard Zynq Evaluation and
Development Kit from the Display Name list and All from the Board Rev list, as shown in

Figure 2.3. Select the appropriate revision for your board (in this case Rev. D has been

selected).
Default Part
Choose a default Xilinx part or board for your project. This can be changed later.
Select: @& Parts | Boards
aFilter
endor: All -
Display Mame: | ZedBoard Zyng Evaluation and Dev... -
Board Rey: All -
Reset All Filters
Search:
Display Name Vendor Board Rev Part
B ZedBoard Zyng Evaluation and Development Kit em.avnet.com ¢ & xc7z020cdg4934-1
B ZedBoard Zyng Evaluation and Development Kit em.avnet.com d & xc7z020dg484-1
B ZedBoard Zyng Evaluation and Development Kit em.avnet.com d @ xc72020dg434-1
© ZedBoard Zyng Evaluation and Development Kitfem.avnet.com |[d [xc7z020dg484-1
[< Back][Mext =]
Figure 2.3: Zedboard Default Part Dialogue Options
Click Next.

www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2A: Expanding the Basic IP Integrator Design

Ensure you have carried out the Zybo board part set-up procedure at the beginning of
Exercise 1A. Select Boards from the Select dialogue click Zybo from the Display Name list and
All from the Board Rev list, as shown in Figure 2.4. Select the appropriate revision for your

board (in this case Rev. B.3 has been selected).

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Select: §p Parts | @ Boards
4 Filter

Vendor: digilentinc.com -
Display Mame: | Zybo -
Board Rev: All -

Reset All Filters

Search:

Display Name Vendor Board Rev Part

Figure 2.4: Zybo Default Part Dialogue Options

Click Next.

M (j) Inthe New Project Summary dialogue, review the specified options, and click Finish to create
the project.

As in the previous tutorial we will now create the basic Zynq embedded system design before adding and
configuring additional IP to utilise hardware interrupts.

Next Steps in Zynq SoC Design www.zyngbook.com 41

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

In this exercise we will create a simple Zynq embedded system which implements two General
Purpose Input/Output (GPIO) controllers in the PL of the Zynqg device, one of which uses the Zynq
development board’s push buttons to generate interrupts. The other GPIO controller will connect
to the LEDs. Both will also be connected to the Zynq processor via an AXI bus connection,

allowing the LEDs to be controlled by a software application which we will create in Exercise 2C.

(@) Inthe Flow Navigator window, select Create Block Design from the IP Integrator section, as in

Figure 2.5:

Flow Mavigator <

<4 Project Manager
% Project Settings
Q"J'E Add Sources

L F 1P Catalog

4 TP Integrator
Iﬁr}: Create Block Design

I Open Blodk Design
Create Block Design
4 Simula Create and add an IP sul::lsl,}rstem to the project.

Figure 2.5: Creating a New Block Design in Flow Navigator

The Create Block Design dialogue will open.

(b) Enter zynq_interrupt_system in the Design name box, as in Figure 2.6:

Flease specify name of block design.

Design name: zynq_interrupt_syshem|

Directory: 5 <Local to Project=

Specify source set:) Design Sources

Figure 2.6: Create Block Design Dialogue

Click OK. The Vivado IP Integrator Diagram canvas will open in the Workspace.

42 www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2B: Creating a Zynq System with Interrupts in Vivado
The first block that we will add to our design will be a Zynq Processing System.

(c) Inthe Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as in Figure

2.7.
Ctrl+E
Delete
Ctrl+C
Ctrl+V
! Ctrl+F
L Select Al Ctrl+ A
¥ AddIP... Ctrl+I
{5 IP Settings...
¥ Validate Design Fa
Create Hierarchy...
Create Comment
Create Port... Ctrl+K
Create Interface Port,.. Ctrl+L
& Regenerate Layout
] save as POF File,..

Figure 2.7: Add IP Option

Alternatively, select the Add IP button in the toolbar at the left of the canvas, shown in Figure

2.8.

&

g _-,[-'H{]I} i J

[
&

Figure 2.8: Add IP option in IP Integrator canvas information message

Next Steps in Zynq SoC Design www.zyngbook.com 43

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

44

The pop-up IP Catalog window will open, as in Figure 2.9.

Search: |

{} 1G/2.5G Ethernet PCS/PMA or SGMII -
4® 20 Graphics Accelerator Bit Block Transfer
{F 3GPP LTE Channel Estimator

{F 3GPP LTE MIMO Decoder

iF 3GPP LTE MIMO Encoder -
{F 3GPPLTE Turbo Encoder

{F 3GPP Mixed Mode Turbo Decoder

{F 3GPP Turbo Encoder

{F 10G Ethernet MAC

{F Accumulator

{F adder/subtracter

{F AHBAite to AXI Bridge

4% audio 125 Transmitter Receiver

iF AXI-Stream FIFO

{F AXI 1G/2.5G Ethernet Subsystem

{F A¥I4-Stream Accelerator Adapter

{F Ax14-Stream Broadcaster

{F A¥14-5tream Clock Converter

{F Ax¥14-5tream Combiner

iF A¥14-Stream Data FIFO

{F A¥14-5tream Data Width Converter

{F AxI4-Stream Interconnect

{F Aax14-Stream Protocol Checker

{F A¥I14-Stream Register Slice —
{F AX¥I4-5tream Subset Converter =

EMTER. to select, ESC to cancel, Ctrl+Q for IP detzils

m

Figure 2.9: Pop-up IP Catalog Window

Enter zynq in the search field and select the ZYNQZ7 Processing System, as shown in Figure

2.10, and press the Enter key on your keyboard.

Search: zynq| (2 matches)

{F Z¥YNQ7 Processing System BFM

Figure 2.10: Adding ZYNQ?7 Processing System from IP Catalog

(d) Asin the previous tutorial, the next step is to connect the DDR and FIXED_IO interface ports

on the Zynq PS to the top-level interface ports on the design.

Select the Run Block Automation option from the Designer Assistance message at the top of
the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,
to generate the external connections for both the DDR and FIXED_IO interfaces, and apply

the relevant board presets.

www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

Your block diagram should now resemble Figure 2.11.

processing_system7_0

PTP_ETHERNET 0+ |||

DDR 4 ||p====="> DDR
FIXED_IO 4 || ™ FIXED_IO
usBIND_0<- |||
- M_AXI_GPO<k [
MAXLGRO ALK ZYNQL ™ reo waveo outh-
TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_N &=

ZYNQY Processing System

Figure 2.11: Zedboard ZYNQ?7 Processing System External Connections

As the Zedboard platform is the target development board, and this was specified on

creation of the project, Vivado will configure the Zynq processor block accordingly.

In the Run Block Automation dialogue, ensure that the option to Apply Board Preset is
selected and click OK. The external connections for both the DDR and FIXED_lO interfaces

will now be generated.

Your block diagram should now resemble Figure 2.12.

processing_system7_0

PTP_ETHERNET_0+ |||

DDR o || "> DDR
FIXED 1O} || ™ FIXED_IO

SDIo_0+- |||

. USBIND_04k |||

M_AXI_GPO_ACLK M_AXL_GPO i
et ZYNQ. TTCO_WAVED oj}Tl L
TTCO_WAVEL_OUT

TTCO_WAVE2_OUT

FCLK_CLKO

FCLK_RESETO_N

ZYNQY Processing System

Figure 2.12: Zybo ZYNQ?7 Processing System External Connections

As the Zybo platform is the target development board, and this was specified on creation of

the project, Vivado will configure the Zynq processor block accordingly.

Next Steps in Zynq SoC Design www.zyngbook.com 45

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

Now that the main Zynqg PS has been added to our design and configured, we can now add

further blocks which will be placed in the PL to add functionality to the system. In this case we

require an AXI GPIO block for the LEDs and another for the push buttons.

(e) Right-click in an empty area of the Diagram window and select Add IP. Enter GPIO in the

46

search field and add an instance of the AXI GPIO IP. Repeat this procedure to add a second
AXI GPIO block to the design.
We will now use the IP Integrator Designer Assistance tool to automate the connection of the

AXI GPIO blocks to the ZYNQ7 Processing System.

Click Run Connection Automation from the Designer Assistance message at the top of the
Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 2.13.

g o comecrn oo S ==

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration options on
the right.

Q| =-{H] All Automation {1 out of 4 selected)
= [W] £F axi_apio_0

Description

Connect Slave interface (faxi_gpio_0/5_aAXI) to a selected Master address space.

SERLs

IF axi_gpio_1 Options

Master: fprocessing_system7_0/M_AXI_GPO

Clock Connection (for unconnected dks) : | Auto -

“ i (=

Figure 2.13: Zedboard Run Block Automation - GPIOinstance

Click OK to ensure automatic clock connection, which adds the Processor System Reset
Module and the AXI Interconnect blocks.

Click Run Connection Automation from the Designer Automation message at the top of the
Diagram window and select /axi_gpio_0/GPIO.

The Run Connection Automation dialogue will open, as in Figure 2.14. Select btns_5bits

from the Select Board Part Interface drop-down menu, and click OK.

www.zyngbook.com Next Steps in Zynq SoC Design

vkl, Run Connection Automatic

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

Automatically make connections in your design by checking the boxes of the interfaces to connect.
Select an interface on the left to display its configuration options on the right.

(=-[H] All Automation (1 out of 3 selected)

=[] £F axi_gpio_0
T
=[] £F axi_gpio_1

Description

Connect Board Part Interface to IP interface.

Interface: faxi_gpio_0/GPIO
Options

Select Board Part Interface:

btns_Shits +

Figure 2.14: Zedboard Run Connection Automation dialogue — GPIO

Repeat step (f) for the second GPIO block, this time selecting leds_8bits for /axi_gpio_1/

GPIO. This will result in a system that is similar to Figure 2.15.

rst_processing_system7_0_100M

slowest_synec_dk
-_reset_in
aux_reset_in
imb_debug_sys_rst
dem_locked

petipheral_aresatn[0 :0}

mb_reset

bus_struct_reset[0:0]
peripheral_reset[0:0]
interconnect_aresetn[0:0]

processing_system?_0_axi_periph
-
=i - S00_AXI
ACLK

axi_gpio_0

ARESETN

SO0_ARESETN [IECHE -/ pron -

—soo_ack <0 .
§ mo_m+F:—

MOO_ACLK [

MOO_ARESETN

MO1 ACLK

s

e &, |_AFESELN

s_axi_aclk

GPID 4= |—D btns_Shits

AXI GPIO
axi_gpio_1

Processor System Reset
processing_system?_0

M_AXL GPO_ACLK ZYNQ‘

PTP_ETHERNET 0 <=
DDR -

FIXED IO+
USBIND_0-

M_AXI_GPO [

TTCO_WAVED_OUT|
TTCO_WAVEL_OUT|
TTCO_WAVE2_OUT)|
FCLK_CLKO
FCLK_RESETO_N

MO1_ARESETN

AXI Interconnect

s

P 5 |_aresetn

s_axi_aclk

GPID 4= |—D leds_8bits

AXI GPIO

?‘(NQ? Processing System

DDR
FIXED_IO

Figure 2.15: Zedboard Zynq Processor System

Click Run Connection Automation from the Designer Assistance message at the top of the

Diagram window and select /axi_gpio_0/S_AXI, as shown Figure 2.16.

Next Steps in Zynq SoC Design

www.zyngbook.com

47

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

e e

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration options on
the right.

Q, E|{E| All Automation {1 out of 4 selected)
(=[] £F axi_gpio_0

Description

Connect Slave interface (faxi_gpio_0/5_AXI) to a selected Master address space.
Options
Master: fprocessing_system7_0/M_AXI_GPO
Clock Connection (for unconnected dks) : | Auto -

4 [=]

Figure 2.16: Zybo Run Block Automation - GPIOinstance

Click OK to ensure automatic clock connection, which adds the Processor System Reset
Module and the AXI Interconnect blocks.

Click Run Connection Automation from the Designer Automation message at the top of the
Diagram window and select /axi_gpio_0/GPIO.

The Run Connection Automation dialogue will open, as in Figure 2.17. Select btns_4bits
from the Select Board Part Interface drop-down menu, and click OK.

" [R———
j o caeson s S = ==

Automatically make connections in your design by checking the boxes of the interfaces to connect.
Select an interface on the left to display its configuration options on the right.

Q, E|{E| All Automation (1 out of 3 selected)

H-[¥] £F axi_apio_0
-7k Connect Board Part Interface to IP interface.

Description

BDﬂ axi_gpio_1

Interface: faxi_gpio_0fGPIO

Options

Select Board Part Interface: | bins_4bits

Figure 2.17: Zybo Run Connection Automation dialogue — GPIO

Repeat step (f) for the second GPIO block, this time selecting leds_4bits for /axi_gpio_1/
GPIO. This will result in a system that is similar to Figure 2.18.

48 www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

processing_system?7_0_axi_periph

SDIO_0 -
- USBIND_04-

M_AXI_GPO_ACLK M_AXI_GPO - [i

ZYNQ TTCO_WAVED_OUT f=

TTCO_WAVEL_OUT =

TTCO_WAVE2_OUT =

FCLK_CLKD

FCLK_RESETO_Np—

7
—EEL}:SM_AXI axi_gpio_0
ACLK -
S5_AXI
rst_processing_system7_0_100M ARESETN[0:0] o j};xT . .. e abie
slowest_sync_dk mb_reset 500_ACLK Em . Sl =13 btns_4bi
MOD_AXI o [l | s axi_aresetn
ext_reset_in bus_struct_reset[0:0] _ARESETN[0:0] D%D o A)(H}a}-:i
=—aux_reset_in peripheral_reset[0:0] MOO_ACLK] iy o AXI GPIO
=mb_debug_sys_rst interconnect_aresetn[0:0] MOO_ARESETN[0:0] axi_gpio_1
==dcm_locked peripheral_aresetn[0:0] MO1_ACLK o
MO1_ARESETN[0:0] el
Processor System Reset y = AL AL GPI0 + (| leds_4bits
FOCESSIn tem7_0 p—5_axi_aresetn
P 9_5ys = AXI Interconnect ~
PTP_ETHERNET_0 5 || AXI GPIO
DDR 45 |} DDR
FIXED_1045 |} FIXED_IO

EYN Q7 Processing System

Figure 2.18: Zybo Zynq Processor System

MWe now need to configure the system to utilise hardware interrupts from the push buttons to
trigger functions in the Zynq PS. Return to the Block Diagram.

(g) Double-click on the axi_gpio_0 block, which is connected to the push buttons, to open the

Re-customize IP window. Select IP Configuration tab as shown below:

Component Name | axi_gpio_0

Board{ IP Configuration

GFIO

In the IP Configuration window, enable interrupts from the push buttons by clicking in the

box highlighted in Figure 2.19 and click OK.

GPIO 2
All Inputs
All Outputs
GPIO Width 32 [1-32]
Default Output Value | 0x00000000 @ | [0x00000000,0xFFFFFFFF]
Default Tri State Value | 0xFFFFFFFF @ | [0x00000000,0xFFFFFFFF]
Enable Interrupt

Figure 2.19: Enabling GPIO interrupts

Next Steps in Zynq SoC Design www.zyngbook.com 49

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

This will add an additional output port for the interrupt request to the GPIO block as shown
in Figure 2.20.

S _AXI 1O |||

I ipZintc_irpt = I

s axi_ack

S Axi_aresem

-

Figure 2.20: GPIO block with interrupt port

Now we must configure the Zynq PS to accept interrupt requests.

(h) Double-click on the Zynq PS block, processing_system7_0, to open the Re-Customize IP

window.

(i) Select Interrupts from the Page Navigator on the left-hand side and expand the menu on the
right as in Figure 2.21. Since we want to allow interrupts from the programmable logic to
the processing system, tick the box to enable Fabric Interrupts, then click to enable the
shared interrupt port as in Figure 2.21. This means interrupts from the PL can be connected

to the interrupt controller within the Zynq PS. Click OK.

Page MNavigator <« || Interrupts Summary Report
Zyng Block Design
¥na g 4= Search:
PS-PL Configuration Sy
&7 | Interrupt Port D Description
. . (=]
Peripheral 1/O Pins g | =[] Fabric Interrupts Enable PL Interrupts to PS and vice versa
| 2 PLPS Interrupt Ports

MIO Configuration

[IRQ_F2P[15:0] [91:84], [68:... Enables 16-bit shared interrupt port from the PL, MSE is assigned the highest In...
i Cored_nFIQ 23 Enables fast private interrupt signal for CPUD from the PL
Clock Configuration Cored_nIRQ 31 Enables private interrupt signal for CPUD from the PL
) Corel_nFIQ 28 Enables fast private interrupt signal for CPU1 from the PL
DDR Configuration Corel_nIRQ 31 Enables private interrupt signal for CPU1 from the PL

SMC Timing Calculation Zh P L OETIEIFTE

Interrupts

Figure 2.21: Configuring Zynq PS to utilise interrupts

(j) The final step is to create an interrupt connection between the ZYNQ?7 Processing System

block and the axi_gpio_0 block.

m Make a connection between the interrupt request of the GPIO block and the newly created
interrupt port of the Zynq PS, highlighted in Figure 2.22.

50 www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

processing_system7_0

-

PTP_ETHERMET 0=
DDR &

FIXED IOk
USBIND_0<=
M_AXI_GPOdk [
TTCO_WAVED_OUT
TTCO_WAVEL OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_N

S

M_AXI GPO_ACLK

o] ZYNQ-

il
| I B

ZYNQ7 Processing System

Figure 2.22: Zedboard Zynq PS with interrupt port

Your final design should resemble Figure 2.23, although the positioning of your blocks may

be different.

processing_system7_0_axi_periph
§
#|4F500_AXIT '
ha axi_gpio_0
rst_processing_system7_0_100M ARESETN[0:0] M ER-]
- GPIO o [| e T
vest_sync_dk mb_reset! Lo g ip2intc \r+ pirs-sbts
==l >) ARESETN[0:0] x>0 Moo_axa <y fi: . axi_aresetn gl e
_reset_in bus_struct_reset[0:0] m g T
aux_reset in peripheral_reset[0:0] m 7AREETN[U'0] MUZiAXHk A AXI GPIO
imb_debug sys_rst interconnect_aresetr[0:0] W‘l_ACLK 4] m—m & i
dem_locked peripheral_aresetn[0:0] ‘"‘l_ARESETN[ﬂ'(]] axi_gpio_1
Processor System Reset M02_ACLK s axt
102_ARESETN[0:0 i
i [0:0] b —s axi_ack GPIO 4 I—DIedsjb\ts
;_axi_aresetn
processing_system7_0 AXI Interconnect
PTP_ETHERNET 0+ ||| AXLGPIO
DR ||} DDR
FIXED_10+ ||} BF[XEDJD
usBIND_0+ |||
M_AXL_GPO_ACLK - M_AXI_GPO) fi il
1RQ_F2P[0:0] ZYNO TTCO_WAVED_OUT =
TTCO_WAVEL_OUTf=
TTCO_WAVEZ_OUT =

FCLK_CLKO
FCLK_RESETO_N

ZYNQ7 Processing System

Figure 2.23: Zedboard Zynq processor system with interrupts

Make a connection between the interrupt request of the GPIO block and the newly created

interrupt port of the Zynq PS, highlighted in Figure 2.24.

Next Steps in Zynq SoC Design www.zyngbook.com 51

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

processing_system7_0

PTP_ETHERMNET 04F

I

DDR < ||}

FIXED_10< ||}

spIo_04 |||

M_AXI_GPO_ACLK - USBIND_0+ ||
[=irg F2po:07 | ZYNQ. MAAGPOF i

TTCO_WAVED OUT =
TTCO_WAVEL OUT =
TTCO_WAVEZ _OUT =
FCLK_CLKQ =
FCLK_RESETO M =

ol

ZYNQ7 Processing System

Figure 2.24: Zybo Zynq PS with interrupt port

Your final design should resemble Figure 2.25, although the positioning of your blocks may

be different.

processing_system7_0_axi_periph

rst_processing_system7_0_100M

TTCO_WAVE2_OUT -
FCLK_CLK

FCLK_RESETO_Nj—

ZYN-07 Processing System

—t{| d-500_AXI
lowest_sync_dk mb_resetpm= ACLK
 reset_in bus_struct_reset[0:0] m ARESETN[0:0]
—aix_reset_in peripheral_reset[0:0] m S00_ACLK B—E T
=mb_debug_sys_rst interconnect_aresetn[0:0] 00_ARESETN[0:0] D%D M017AX1+ _
= dcm_locked peripheral_aresetn[0:0] MOO_ACLK (]] y . D DDR
MOO_ARESETN[0:0] axi_gpio_0
Processor System Reset M1 ACLK " .
processing_system?_0 1_ARESETN[0:0] e mzﬁ:cm::t |_D btns_4bits
PTP_ETHERNET_0+ ||| AXI Interconnect
DDR - I_ AXI GPIO
FIXED_I04- oy
SDIO_04- | axi_gpio_1 DFIXEDJO
M_AXI_GPO_ACLK - usaInD_o+ . — il
R mmon ZYNQ M_AXI_GPO< fE ks
- TTCO_WAVED_OUT = ;_axi_adk GPIO 4+ wI—D\edsjbn:s
TTCO_WAVEL_OUT = L axi_aresetn

AXI GPIO

Figure 2.25: Zybo Zynq processor system with interrupts

m (k) Save your design by selecting File > Save Block Design from the Menu Bar.
(I) Validate the design by selecting Tools > Validate Design from the Menu Bar. This will run a
Design-Rule-Check (DRQ).
Alternatively, select the Validate Design button, [, from the Main Toolbar.
(m) A Validate Design dialogue should appear to confirm that validation of the design was

successful. Click OK, to dismiss the message.

With the design successfully validated, we can now move on to generating the HDL design files

for the system. The procedure here is identical to the previous tutorial, First Designs on Zynq.

52 www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

(n) Inthe Sources window of the Data Windows pane, select the Sources tab.

(0) Right-click on the top-level system design, which in this case is zynq_interrupt_system, and
select Create HDL Wrapper, as shown in Figure 2.26.

Sources — O ¢F =
i] o i k
QA2 RE

-1 Design Sources (1]
esR¥ Y 7yng interrupt system (zyng interrupt system.bd) (8)

- =1Cond (&} Source Node Properties... Ctrl+E
- Open File Alt+0
=J-{ Simu Create HDL Wrapper...

L i B T

Figure 2.26: Create HDL Wrapper

The Create HDL Wrapper dialogue window will open. Accept the default option specifying
that Vivado should manage the wrapper and click OK.

With all HDL design files generated, the next step in Vivado is to implement our design and

generate a bitstream file.

(p) In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

4 Program and Debug
@ Bitstream Settings
I %] Generate Gitstream I

> ‘3 Open Hardware Manager
(g) A dialogue window will open requesting that you launch synthesis and implementation

before starting the Generate Bitstream process. Click Yes to accept.

The combination of running the synthesis, implementation and bitstream generation
processes back-to-back may take a few minutes, depending on the power of your computer

system.

Next Steps in Zynq SoC Design www.zyngbook.com 53

Exercise 2B: Creating a Zynq System with Interrupts in Vivado

54

() Once the bitstream generation is

. . . Bitstream Generation Completed | 23 |
complete a dialogue window will
open to inform you that the process Iol Bitstream Generation successfully completed.
has been completed successfully, asin Next
Figure 227 @ Dpen Implemented Desigr
_) View Reports

Select Open Implemented Design,
and click OK.

") Open Hardware Manager

At this point you will be presented [P Qe shw i chelog agan

OK]I Cancel I

with the Device view, where you can [

-

see the PL resources which are utilised .) , o
Figure 2.27: Bitstream Generation completion dialogue

by the design.

With the bitstream generation complete, the final step in Vivado is to export the design to the
SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the development board.

(s) Select File > Export > Export Hardware from the Menu Bar.

(t) The Export Hardware for SDK dialogue window will open. Ensure that the option to Include

bitstream is selected, as in Figure 2.28, and Click OK.

Export hardware platform for software development

Figure 2.28: Export Hardware for SDK
(u) Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

This concludes the steps that are required in Vivado IDE. All hardware components of the system
have been configured and generated. In the next exercise we will create the software application

that utilises this hardware system.

www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2C: Creating a Software Application in the SDK

In this exercise a software application will be created that utilises hardware interrupts on the
Zynq development board. The push buttons will be used to increment a counter by different
values, and the count will be continuously displayed on the LEDs in binary form, where LEDO
corresponds to the least significant bit (LSB) and the uppermost LED is the most significant bit
(MSB). This application will run on the Zynq processing system, communicating with the AXI GPIO

blocks implemented in the PL.

The SDK should have opened after the conclusion of Exercise 2B. If it did not open, you can open
the SDK by navigating to Start > All Programs > Xilinx Design Tools >SDK 2015.1> Xilinx SDK

2015.1 and specifying the workspace as in Exercise 1C.

(@) Select File > New > Application Project from the Menu bar.

(b) The New Project dialogue window will open. Enter interrupt_counter in the Project name

field, as shown in Figure 2.29, keeping all other options with the default settings. Click Next.

@New Project ‘El | & R |

Application Project .
__Cj "
Create a managed make application project.

Project name: interrupt_counter

V| Use default location
C\Zynq_Book\zynq_interrupts\zyng_interrupts.sdldinterrupt

default

05 Platform: |star1da|ona V‘

Target Hardware

Hardware Platform: |zynq_iﬂterrupt_systam_wrapper_hw_platfurm_ﬂ v| | New... |
Processor: | psT_cortexad_0 - |
Target Software

Language: @ C C++

Board Support Package: @ Create New interrupt_counter_bsp

Use existing

‘f_?:' = Bac | Mext = | [Finish] | Cancel ‘

Figure 2.29: New Application Project dialogue

Next Steps in Zynq SoC Design www.zyngbook.com 55

Exercise 2C: Creating a Software Application in the SDK

56

(0

At the New Project Templates
screen, select Empty Application,
as in Figure 2.30, and click Finish to
create the project.

NOTE: The new project should
open automatically. If it doesn't,
you may need to close the
welcome tab in order to view the

project.

With the new Application Project

created, we can now import pre-

prepared

source code for the

application.

@ MNew Project

Templates

Create one of the available templates to generate a fully-functioning
application project.

Available Templates:

Peripheral Tests A blank C project.

Dhrystone

Hello Warld

IwIP Echo Server

Memory Tests

R5A Authentication App

| |SREC Bootloader

| | Xilkernel POSIX Threads Demo
Zyng DRAM tests

| | Zyng FSBL

) [Gonea

| If?:l < Back Mext > [Finish

Figure 2.30: New Project Template dialogue

(d) Inthe Project Explorer panel, expand interrupt_counter and highlight the src directory. Right-

click and select Import..., choosing General > File System as an import source.

In the Import File System window, click the Browse... button.

The source file directory will depend on the Zynq development board that is in use. If you are

using the Zedboard, navigate to: C:\Zynq_Book\sources\zedboard\zynq_interrupts. If

you are using the Zybo, navigate to C:\Zynq_Book\sources\zybo\zynq_interrupts.

Click OK.

Select the file interrupt_counter_tut_2B.c, as shown in Figure 2.31, and click Finish.

This file contains C Code that has been written to perform the interrupt triggered counter

operation on the Zynqg development board.

www.zyngbook.com

Next Steps in Zynq SoC Design

Exercise 2C: Creating a Software Application in the SDK

(= zyng_interrupts \.g| interru pt_counter_tut_EB.cI
|| [interrupt_counter_tut_2D.c

Filter Types... H Select All H Deselect All

Into folder: interrupt_counter/src

Options
[] Overwrite existing resources without warning

[] Create top-level folder

Figure 2.31: Import C source file

(h) Open the imported source file by expanding the src folder and double-clicking on

interrupt_counter_tut_2B.c, and explore the code.

The code has been fully commented, but will be briefly discussed here for clarity.

By now, you should be familiar with the use of drivers and parameters in configuring and
operating the GPIO. Remember, detailed information of these drivers can be found in the
system.mss file, explaining the purpose of each function and the parameters passed to it.

Predesignated parameters can also be found in xparameters.h.

The Zynq PS features a built in interrupt controller, initialised here as XScuGic INTCInst. This
handles all incoming interrupt requests passed to the PS and performs the function
associated with each interrupt source. It is also capable of prioritising multiple interrupt

sources to the requirements of the application.

Of particular note is the inclusion of the function BTN_Intr_Handler(void
*InstancePtr) ;. This is the interrupt handler function for the push buttons and is called
every time an interrupt request from the push buttons in the PL is received in the PS. This
performs a counter increment on each call and displays the value of the counter on the LEDs

in binary.

Next Steps in Zynq SoC Design www.zyngbook.com 57

Exercise 2C: Creating a Software Application in the SDK

An initial setup function can be found below the main function. This is
InterruptSystemSetup(XScuGic *XScuGicInstancePtr);. The function initialises
and configures the interrupt controller in the Zynq PS, connecting the interrupt handler to
the interrupt source. It also makes a call to the latter function which enables the interrupt

sources and registers exceptions.

The next step is to program the Zynq PL with the bitstream file that we generated in Exercise 2B.

Ensure that the Zynq development board is powered on and that the JTAG port is connected to

the PC via the provided USB-A to USB-B cable. Also ensure that the jumper positions are correct

as shown in the previous tutorial.

()

Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the
Menu bar. The Program FPGA window will appear. The Bitstream field should already be

populated with the correct bitstream file, as in Figure 2.32.

E———

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

Hardware Platform: ’zynq_interrupt_system_wrapper_hw_platform_ﬂ v]

Connection: ’Local

Device: Auto Detect

Bitstream: zZyng_interrupt_system_wrapper.bit frroz.

BMM/MMI File: Search... | | Browse..

Software Configuration
Processor ELF File to Initialize in Block RAM

[Program] ’ Cancel

Figure 2.32: Program FPGA dialogue window

As in the previous tutorial, once the device has successfully been programmed, the DONE LED

on the ZedBoard will turn blue. Similarly the DONE LED on the Zybo will turn green.

With the Zynq PL successfully configured with the bitstream file, we can now launch our software

application on the Zynq PS.

58

www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2C: Creating a Software Application in the SDK

(j) Select interrupt_counter in Project Explorer. Right-click and select Run As > Launch on
Hardware (GDB).

m The counter increments by different values based on the push buttons which are pressed.

This operation is demonstrated in Figure 2.33.

MSB LSB
LED7 LEDO
00000000 =0
00000001 =1
00000010 =2
(]
o
o

Figure 2.33: Zedboard LED flashing states

Try pressing different push buttons and observing how the counter increments (can the
counter achieve 2557) Based on your findings, can you determine the value assigned to each

of the push buttons (BTNU, BTND, BTNL, BTNR and BTNC as noted on the ZedBoard)?

The counter increments by different values based on the push buttons which are pressed.

This operation is demonstrated in Figure 2.34.

Next Steps in Zynq SoC Design www.zyngbook.com 59

Exercise 2C: Creating a Software Application in the SDK

MSB LSB
LED3 LEDO
0000=0
0001 =1
0010=2
o
o

o

Figure 2.34: Zybo LED flashing states

Try pressing different push buttons and observing how the counter increments. Based on
your findings, can you determine the value assigned to each of the push buttons (BTNO,
BTN1, BTN2, BTN3 as noted on the Zybo)?

MYOU have successfully created and executed a software application utilising interrupts on the
Zynq PS. The next step is to go back and add an additional interrupt source with higher priority

to alter the functionality of the system.

60 www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2D: Adding a Further Interrupt Source

In this exercise we will add an additional source of interrupt to the project created in Exercise 2B
in the form of an AXI Timer.

<
(@) Launch Vivado by double-clicking on the Vivado desktop icon: s, OF by navigating to

Start > All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado 2015.1

(b) When the program launches, open the previously created project by selecting Open Project.
The previously created project should appear in the list of recent projects as C:/Zynq_Book/
zynq_interrupts/zynq_interrupts.xpr so click on it. If it doesn't, click Browse Projects... and
navigate to that directory, selecting zynq_interrupts.xpr and clicking open.

(c) Open the block design from the sources panel by expanding the sources and double clicking

on the block design as highlighted in Figure 2.35.

-4z Design Sources (1]

m
5
;

+-I0) Constrain
+-15) Simulation Sources (1]

Figure 2.35: Opening an existing block diagram

(d) With the block diagram now open we will add an AXI Timer to the design. In the Vivado IP
Integrator Diagram canvas, right-click anywhere and select Add IP. Enter timer in the search
field and add the IP AXI TIMER to the design by either dragging it onto the canvas or selecting
it and pressing ENTER.

(3 matches)

ENTER to select, ESC to cancel, Ctrl+Q for IP details

Figure 2.36: AXI Timer in the IP Catalog

Next Steps in Zynq SoC Design www.zyngbook.com 61

Exercise 2D: Adding a Further Interrupt Source

(e) Select Run Connection Automation option from the Designer Assistance message at the top
of the Diagram window. In the Run Connection Automation window, select/axi_timer_0/

S_AXI to connect the timer to the AXI Interconnect. Click OK..

axi_timer_0
~ "
-5 0
=capturetrigd generatecutl s
—capturatrigl generatzout] -
- frEgre AT ()
—=mis axi_adk @3
- Ai_aresetn
. .
AXI Timer

Figure 2.37: AXI Timer in the block design

(f) Note that in Figure 2.37 the AXI Timer features an interrupt request, which requires
connection to the Zynq PS. However, we already have an interrupt connected to the input of
the PS. This input is a shared interrupt port, and so accepts multiple interrupts via one signal.
We therefore require an additional IP block to concatenate these two interrupt requests into
one signal. In the canvas, right-click anywhere and select Add IP. Enter concat in the search

field and add the IP Concat to the design.

processing_syste

*lconcat_0
M_AXT_GPO_ACLK

-
In0LO:0] 4 r1:0 rorroo; Z YNQL

In1[0:0]

Concat

ZYNQ7 Processing

Figure 2.38: Concat in the block design

(g) Remove the connection between the AXI_GPIO ip2intc_irpt and IRQ_F2P[0:0] on the Zynq
PS by clicking on the line between and pressing DELETE. Connect the output from he Concat
block, xlconcat_0 to this instead. Then, connect the interrupt request from the GPIO to
In0[0:0] and the interrupt from the timer to In1[0:0], creating a shared interrupt signal that
is passed to the PS.

62 www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2D: Adding a Further Interrupt Source

m Your block diagram should be similar to Figure 2.39.

axi_gpio_1

s ax
; axi_aclk GPI0 4 |[———> leds_8bits

;_axi_aresetn

. . . AXI GPIO
processing_system7_0_axi_periph axl_timer 0
.
(i SO0_AXI | e S_AXD
) LK. !
rst_processing_system7_0_100M)
RESETN[0:0] =icapturetrigl generateoutl =
slowest_sync_clk mb_resetp= _ACLK —freeze pwm0 =
- reset_in bus_struct_reset{0:0] =) ARESETN[0:0] D70 moo_axinfis _axi_aclk interrupt
=aux_reset_in jperipheral_reset{0:0] p= |_ACLK D%D MO1_AXI i ;,_axi_aresetn
=mb_debug_sys_rst interconnect_aresetn[0:0] _ARESETN[0:0] [N MO2_AXId: fis FSTRITET
—{dem_locked peripheral_aresetn[0:0] 1_ACLK
Processor System Reset WATE R axi_gpio_0
2_ACLK ==
M02_ARESETN[0:0] =| R s_Axt)
all gy g J FPIQ{? —T ;btns_Sb\ts
xlconcat 0 processing_system7_0 AXI Interconnect _axi_aresetn iy
PTP_ETHERNET_0<3 ||| AXI GPIO
DR = —{=> DDR
Concat FIXED_10+3 ||} [FIXED_IO
usemp_oea |||
|_AXI_GPO_ACLK - M_AXT_GPD it |
(IRQ_F2P[1:0] ZYNO TTC0_WAVED_OUT |-
TTCO_WAVEL_OUT =
TTCO_WAVEZ_OUT =

FCLK_CLKO
FCLK_RESETO_Np—!

ZYNQ7 Processing System

Figure 2.39: Zedboard complete system with multiple interrupts sources

Your block diagram should be similar to Figure 2.40.

axi_gplo_1

s axi_adk GPLO - [0 leds_4bits
's_axi_aresetn
AXI GPIO
processing_system?_0_axi_periph axi. timer 0
_ aw.tmert
| s00_xt 1 |-ks A
’ —=lacL i
1st_processing_system?7_0_100M - i b o
sl sync_dk mb_reset -)_ACLK —ffreere pwmi =
ext_reset_in bus_struet_reset[0:0] pm) ARESETN0:0] E5 0 MO0 _AXI - [t ;. avi_adk up
=laux_reset_in peripheral_reset[0:0] = _ACLK D%D MOL_AXT o [e p—ic ayi_anesotn
=mb_debug_sys_ret interconnect_amesetn[0:0] _ARESETN[(:0] &= MOZ_AXI--
—dem_locked heral aresetn[0:0] 01_scLK ;“élg"';‘i’l;e"]
101_ARESETN[0:0] =
Processor System Reset 02 ACLK 2| s i
@_ARESETN ok . c.:mn.f | [bins_4bits
ip2Zinte_irpt]
L—s_avi_amesetn
xleoncat_0 .
= processing_system?_0 AXT Interconnect _—
AXI GPIO —‘
PTP_ETHERNET 0 -3
DOR -3 DDR
FIXED_[O -} B FIXED IO
SDIO_0 -3
L - USBIND 0 -«
Sl M_AXT_GPO -3+ |3t
T LR ZYNQ TTCO_WAVED_OUT f-
TTCO_WAVEL_OUT =
TTCO_WAVEZ_OUT =

FCLK_CLKD
FCLK_RESETO_N p—

ZYNQ7 Processing System

Figure 2.40: Zybo complete system with multiple interrupts sources

MWe now need to generate a new bitstream for our altered design.

Next Steps in Zynq SoC Design www.zyngbook.com 63

Exercise 2D: Adding a Further Interrupt Source

64

(h)

()

In Flow Navigator, click Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

A dialogue window will open requesting that you launch synthesis and implementation
before starting the Generate Bitstream process. Click Yes to accept.

Again these back-to-back processes may take a few minutes, depending on the power of
your computer system.

When this process is completed click OK.

In Flow Navigator, select Implemented Design from the Implementation section to open the
hardware implementation diagram. If the design needs to reload click reload on the yellow
banner at the top of the hardware implementation screen. A current implemented design

must be open in order to export a hardware design.

Select File > Export > Export Hardware... from the Menu Bar.

(m) The Export Hardware for SDK dialogue window will open. Ensure that the option to Include

bitstream is selected, and Click OK. A dialog will be presented asking if you wish to overwrite
an exported file, which is the initial system featuring a single interrupt. Select Yes for this and
any further prompts.

Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.
Once the SDK opens and builds the project, we will alter our application to make use of the
new interrupt source. Right-click on the project interrupt_counter in the Project Explorer
and select Delete.

The Delete Resources dialogue will open. Select the Delete project contents on disk

checkbox as in Figure 2.41, and click OK.

@ Delete Re_@lﬁg

[| Are you sure you want to remove project 'interrupt_counter' from the workspace?

Delete project contents on disk (cannet be undone)

Project location:

C\Zyng_Book\zyng_interrupts\zyng_interrupts.sdk\interrupt_counter

[revens] |

Figure 2.41: Confirm Delete Resources Dialogue

www.zyngbook.com Next Steps in Zynq SoC Design

Exercise 2D: Adding a Further Interrupt Source

Repeat for the BSP, interrupt_counter_bsp. Select Continue if there are any further

prompts.

Repeat the steps outlined in Exercise 2C (a) to (h) for creating a new application project, BSP

and importing a source file, this time selecting interrupt_counter_tut_2D.c.

Notice the inclusion of a second interrupt handler, TMR_Intr_Handler(void *data);
which will increment the value of the counter after the timer has expired three times, writing

the new value to the LEDs.

Additional code has been included in the main to configure and start the timer, and full
details of these functions can be found in the system.mms. The function
IntcInitFunction(ulé6 Deviceld, XTmrCtr *TmrInstancePtr,XGpio
*GpioInstancePtr); also contains additional code to connect the timer interrupt to the

handler and enable it.

In brief, the timer is loaded with a value TMR_LOAD and configured to automatically reload
on each expiration. The interrupt handler keeps track of the number of expirations and after
three expirations performs the required steps, otherwise it simply increments the variable

storing the number of expirations.

(0) Download the bitstream to the Zynq PL by selecting Xilinx Tools > Program FPGA from the
Menu bar.

(p) Once the development board LED indicating successful programming lights up, select
interrupt_counter in Project Explorer. Right-click and select Run As > Launch on Hardware
(GDB).

Note that the counter will increment by 1 when timer expires three times. The buttons still

operate as in the previous exercise.

This completes this tutorial where systems utilising both single and multiple interrupt

sources have been created and tested.

Next Steps in Zynq SoC Design www.zyngbook.com 65

Exercise 2D: Adding a Further Interrupt Source

66 www.zyngbook.com Next Steps in Zynq SoC Design

The Zynq Book Tutorials

Designing With Vivado HLS

vl.4, June 2015

3

67

Revision History

68

Date Version Changes
30/10/2013 1.0 First release for Vivado Design Suite version 2013.2
28/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4
06/5/2014 1.2 Updated for changes in Vivado Design Suite version 2014.1
09/04/2015 1.3 Updated for changes in Vivado Design Suite Version 2014.4
30/04/2015 131 ggggtsds Loit:en\c/:gjr(i?eoﬁyzb& ii/elopment board for Vivado
19/06/2015 14 Updated for changes in Vivado Design Suite Version 2015.1

www.zyngbook.com Designing With Vivado HLS

Introduction

This tutorial presents an introduction to High Level Synthesis using the Vivado™ HLS environment. The
creation of projects manually through the GUI, and automatically through scripting will be covered. The
process of simulating, synthesising and analysing a Vivado HLS design will then be explored, with design

optimisation and solution comparison along the way.
The tutorial is split into three exercises, and is organised as follows:

Exercise 3A — This exercise concerns the creation of projects using both the Vivado HLS GUI and use of
Tcl scripting. It details the inclusion of relevant source and test files and generation of a project for use in the

following exercise.

Exercise 3B — This exercise involves design optimization of a matrix multiplication function through the
use of various directives. It presents the Vivado HLS design environment and method of synthesis and

analysis of project solutions.

Exercise 3C — Finally, a more detailed look at how Vivado HLS synthesises interfaces is investigated.

Designing With Vivado HLS www.zyngbook.com 69

Exercise 3A: Creating Projects in Vivado HLS

In this exercise we will present the creation of Vivado HLS projects using both the Vivado HLS GUI

and the use of Tcl scripting to expedite the process.

(a) Before we begin it is necessary to copy the files from C:\Zynq_Book\sources\hls to a new
directory, C:\Zynq_Book\HLS.

(b) Launch the Vivado HLS GUI by navigating to Start > All Programs > Xilinx Design Tools >
Vivado 2015.1 > Vivado HLS > Vivado HLS 2015.1

(c) When the Vivado HLS GUI loads, you will be presented with the Welcome screen as in Figure

3.1.
VIVADQ' XILINX

(/;;'

B R

L ¢
Create Mew Project Open Project Open Example Project

Documentation

m

Tutorials User Guide Release Notes Guide

Figure 3.1: Vivado HLS welcome screen

(d) Select the option to Create New Project in Figure 3.1

(e) At the Project Name dialogue, enter matrix_mult_prj as the Project name and
C:\Zynq_Book\HLS\tut3A as Project location.
Click Next.

70 www.zyngbook.com Designing With Vivado HLS

Exercise 3A: Creating Projects in Vivado HLS

(f) You will now be prompted to add or remove source files for the project. All C-based source
files for this tutorial have been created in advance, as we seek to guide through the design
flow rather than the programming itself. Click Add Files... and navigate to

C:\Zynq_Book\HLS\tut3A

Add/Remove Files L
Add/remove C-based source files (design specification) %y
Top Function: matrix_mult

Design Files
Name CFLAGS
\=| matrix_mult.cpp

=] matrix_mult.h
Edit CFLAGS...

Remove

[<Back | Net> | Fo=r

Figure 3.2: Adding files to a Vivado HLS project

Select the files matrix_mult.cpp and matrix_mult.h (hold down control to select multiple
files) and click Open. Set the top function to matrix_mult as in Figure 3.2.
Click Next.

(g) You will now be prompted to add a testbench file for design testing. Once more, click Add
Files... and navigate to the previous directory this time adding the file matrix_mult_test.cpp
and clicking Next.

The next step is configuring a solution for a specific FPGA technology. In this case, leave the

solution name and ensure the clock period is set to 5 as shown in Figure 3.3.

Designing With Vivado HLS www.zyngbook.com 71

Exercise 3A: Creating Projects in Vivado HLS

¢ New Vivado HLS Project

B

Solution Configuration
Create Vivado HLS solution for selected technology

Solution Mame: solutionl

Clock
Pericd: 5 Uncertainty:

Part Selection

Part: [Please select part]

—et

[

Figure 3.3: Solution Configuration Window

m Since we are using the ZedBoard with the Zynq-7020 chip click, E in the part selection

panel.

¢ Device Selection Dialog [m | | 2% |
Select: ’ @ Parts] [E anrd.s]
RTL Tool Filter
Auto - Vendor: em.avnet.com -
Display Name: | ZedBeard Zyng Evaluation and Development Kit -
Reset All Filters
Search: +
Display Mame Part Family Vendor
ﬁ ZedBoard Zyng Evaluation and Development Kit xc72020clgd84-1 zyng em.avnet.com
I m p
[oK] ’ Cancel

Figure 3.4: Zedboard device selection dialogue

In the Select section, click Boards and then filter the board parts using the filter drop down

menus as in Figure 3.4. Select ZedBoard Zynq Evaluation and Development Kit and click OK.

Click Finish.

72 www.zyngbook.com

Designing With Vivado HLS

Exercise 3A: Creating Projects in Vivado HLS

Since we are using the Zybo with the Zynq-7010 chip click, E in the part selection panel.

¢ Device Selection Dialog |E| | Y |
Select: [@ Par’rj-] ’ ﬁ Boards]
RTL Tool Filter
Aute - Product Category: | All - | Package: clg40o -
Family: zyng - | Speed grade: | -1 -
Sub-Family: zyng = | Temp grade: | € -
Reset All Filters
Search: ¥
Part Family ~ Package Speed SLICE LuT FF DSP BRAM
s 072020194001 Zyng clgd00 -1 13300 53200 108400 220 280
@xc?zﬂlﬂclgﬂrﬂﬂ-l Zyng clg400 -1 4400 17600 35200 80 120
oK l [Cancel

Figure 3.5: Zybo Part selection dialogue

In the Select section click Parts and then filter the board parts using the filter drop down
menus, as shown in Figure 3.5. The required part can be confirmed by inspecting the Zynq
chip on the Zybo development board. The Z7010 Zynq chip with a clg400 package should
be selected. Click OK.

Click Finish.

The project will be generated and the workspace will open in Synthesis mode for the
generated project and solution as in Figure 3.6.

Expanding the Source and Test Bench sections in the Explorer tab on the left side shows the
inclusion of the source and test files from the previous steps. Double clicking on these files

opens them in the editor view for examination and editing.

The project consists of a matrix multiplier, which multiplies two matrices inA and inB to
produce the output prod. The testbench performs the multiplication of two known matrices

and checks the value of prod against expected values.

Designing With Vivado HLS www.zyngbook.com 73

Exercise 3A: Creating Projects in Vivado HLS

74

¢ Vivado HLS - matrix_mult_prj (C:\Zynq_Book\HLS\tut3A\matrix_mult_prj) o] [S]= =
File Edit Project Solution Windo Help
X RiE@#ta%iadir- E1 RS aH-E) 5. Debug [[i_| Synthesis | Analysis
[Explorer 23 S | = O |5 Outline £% L4 Directive = B8
4 125 matrix_mult_prj -
[l Includes An outline is not available.
4 = Source

[matri_mult.cpp
[y matrix_mult.h
4 (= TestBench
|6 matrix_mult_test.cpp
a Y= solution?
4 % constraints
Y& directivestc
i scriptitcl

& Console & . @] Errors| & Warnings S sl E-r- =g
Vivado HLS Console

matri mult_prj

Figure 3.6: Synthesis view in the workspace

While the process of getting to this stage of HLS development is relatively straightforward, it
can be quite repetitive and so can be facilitated by use of Tcl scripting. This automates the
process of project naming and adding files. As such, we will now demonstrate the creation of

the same project using the aforementioned scripting approach.

First, close the Vivado HLS GUI. We will now open the Vivado HLS Command Prompt.

Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools

> Vivado 2015.1 > Vivado HLS > Vivado HLS 2015.1 Command Prompt.

-

&3 Vivado HLS 2015.1 Command Prompt m =R

Uivado HLS Command
Availabhle commands

m| »

Mice t Windows [Uersion 6.1.76811
Copyright (c) 2887 Microsoft Corporation. All rights reserved.

C:nEilinx\Uivado HLS“\2815.1>

Figure 3.7: Vivado HLS command prompt

www.zyngbook.com Designing With Vivado HLS

Exercise 3A: Creating Projects in Vivado HLS

(j) Itis observed that the default directory for commands is the install directory of Vivado HLS,
as in Figure 3.7. To change this to the working directory for this tutorial, use the following

commands, followed by pressing the Enter key.

« cd.. — This is a change directory command which moves up a

level in the directory. Repeat this until you have reached the level of the C: drive.

+ «dZynq_Book — This changes directory to the Zynq_Book folder.
cd HLS — This changes directory to Zynq_Book/HLS.
« cdtut3A — This changes directory to Zynq_Book/HLS/tut3A.

The command prompt should now be in the working directory C:\Zynq_Book\HLS\tut3A. This
folder contains the source and test files for a project, and also the Tcl script required to build the

project, run_hls_zed.tcl and run_hls_zybo.tcl

(k) With the correct working directory and the required files present in that directory, we can
now build the project. This is achieved through simply running the Tcl script using the

command:

vivado _hls -f run_hls zed.tcl

vivado_hls -f run_hls zybo.tcl

MThis will begin the process of creating the project and adding source and test bench files. A HLS
solution is then created before configuring the project for the target device. Finally a C simulation
is run which utilises the test bench to ensure the project operates correctly.

The testbench performs identical multiplications using the HLS hardware solution and software,
and compares the results. If these results are identical, a “Test passed!” message is displayed:

I [8¥YH-281] Setting up clock ‘default’ with a period of Sns.
Compiling ../ ../../.. matrix_mult_test.cpp in debug mnode
Compiling ../ ../../.. matrix_mult.cpp in debugy mode
ﬂnnnl\:"-':n:'r cSim-ExE

Egst paszed?

3T T™C3im done with 8 errors.
I [LIC-181]1 Checked in feature [HLS]
ssAuyng BooksHLEStut3R >

(I) To open the project in the Vivado HLS GUI enter the following command:

vivado_hls -p matrix_mult_prj

Designing With Vivado HLS www.zyngbook.com 75

Exercise 3A: Creating Projects in Vivado HLS

And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

Using the project generated in the previous exercise, we will now investigate the process of design
optimisation in Vivado HLS. This will also provide an insight into the flow from project creation to C
synthesis and C/RTL cosimulation. We will also discuss the use of the Analysis perspective in analysing a
HLS solution.

76 www.zyngbook.com Designing With Vivado HLS

Exercise 3B: Design Optimisation in Vivado HLS

(@) You should already have the GUI open from the previous exercise, but if you don’t, open the
project matrix_mult_prjin the directory C:\Zynq_Book\HLS\tut3A.

(b) Expand the tabs for Source and Test Bench in the Explorer tab of the Synthesis view. As
before, this shows that the source and test files have been successfully added to the project.
Double clicking on each of these will open them in the editor allowing the code to be

inspected and altered as required.

matrix_mult.cpp contains code that performs the multiplication of two matrices through
use of iterative loops that run through the rows and columns of the matrices to calculate the

product.
matrix_mult.h contains definitions and the prototype function for the matrix multiplication.

matrix_mult_test.cpp is the test bench file which calculates the product of two given
matrices using both the HLS hardware solution and software, comparing to two to ensure
successful operation.

(c) Click the Run C Simulation button B in the toolbar to run a C simulation of the solution.
Leave the options as default (no boxes checked, no input arguments) and click OK. Upon
completion of the simulation, the “Test passed!” message will be displayed in the console in

the bottom of the screen as in Figure 3.8.

Bl Console &2 O] Errors| & Warnings

Vivade HLS Conscle

make: “csim.exe' is up to date.

Test passed!

@I [SIM-1] C5im done with @ errors.
@I [LIC-181] Checked in feature [HLS]

Figure 3.8: Vivado HLS console detailing successful testing
(d) The next step is to synthesise the C++ code using HLS. Click the C Synthesis button B in
the toolbar. Vivado HLS will begin the process of converting the C++ code into an RTL model

with associated VHDL/Verilog/SystemC code. The console details the steps performed in

achieving this.

Designing With Vivado HLS www.zyngbook.com 77

Exercise 3B: Design Optimisation in Vivado HLS

Upon completion, a Synthesis Report will open automatically. This details various aspects of
the synthesised design, such as information concerning timing and latency and FPGA

resource utilisation estimates. (You may require to expand sub-sections to see results.)

Performance Estimates
—| Timing (ns)
=| Summary

Clock Target Estimated Uncertainty
default 5.00 344 063

- Latency (clock cycles)
= Summary

Latency Interval
min max min max Type
686 686 687 687 none

= Detail

4 Instance

Latency Initiation Interval

Loop Mame min max Iteration Latency achieved target Trip Count Pipelined

- Row 685 a85 137 - - 5 no
+ Col 135 135 27 - - 5 no
++ Product 25 25 5 - - 5 no

The synthesised design has an interval of 687 clock cycles. Each input array contains 25
elements (as it uses 5x5 matrices) and so this suggests roughly 27 clock cycles per input read.
We can now run a C/RTL cosimulation to ensure that the synthesised RTL behaves exactly the
same as the C++ code under test.

Click the Run C/RTL Cosimulation button " . For the RTL selection, ensure VHDL is
selected and click OK. Cosimulation will now begin, with the RTL system being generated
using VHDL. This process may take a short while to complete but progress can be viewed in

the console. Upon completion, the Cosimulation Report will be opened as in Figure 3.10

Result

Latency Interval

RTL Status | min @ avg max min avg max
VHDL Pass | 686 686 686 687 G687 B&7
Verilog MA MNA MNA MNA O MNA MNA G NA

Export the report{.html} using the Export Wizard

Figure 3.10: Cosimulation report for the matrix multiplier, solution

78 www.zyngbook.com Designing With Vivado HLS

Exercise 3B: Design Optimisation in Vivado HLS

Note the “Pass” message of Figure 3.10 indicating that the RTL behaves the same as the C++
source code.

Create a new solution for the design by either clicking the New Solution button E' in the
toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for
solution2.

Double click on matrix_mult.cpp in the Source section of the Explorer tab to ensure the code
is visible in the workspace. We will now insert a directive which will pipeline the nested loops
of the matrix multiplication code. This will perform loop flattening, removing the need for

loop transitions.

Open the Directives tab to the right of the workspace. Click on Product and you will observe
the associated portion of code highlighted in the editor, in this instance the multiplication of
array elements to produce the product elements of the resulting matrix. Right click on

Product and select Insert Directive:.

4 @ matrix_mult
@ a
&b
& prod
a % Row
4 % Col
% Product

Inzert Directive...

This will open the Directives Editor. Use the type drop-down menu to select the option
PIPELINE. Click OK to accept the default options. The directives tab should now resemble
Figure 3.11.

EE Outline | [14 Directive 3 =g

4 O matrix_mult
J a
@b
@ prod
4 %' Row
4 % Col
4|7 Product
0% HLS PIPELIME

Figure 3.11: Pipelining nested loops in HLS

Designing With Vivado HLS www.zyngbook.com 79

Exercise 3B: Design Optimisation in Vivado HLS

80

(9) Click the C Synthesis button 5. to synthesise the RTL design. The console yields some

information about the process of flattening the Row loop. It also explains that the default
Initiation Interval (ll) target of 1 could not be met for the Product loop. This is due to loop

dependency.

Performance Estimates
—| Timing (ns)
=| Summary

Clock Target Estimated Uncertainty
default 5.00 7.80 0.63

- Latency (clock cycles)
=| Summary
Latency Interval

min max min max Type
4260 426 427 427 none

-1 Detail
Instance
- Loop
Latency Initiation Interval
Loop Mame min max [teration Latency achieved target Trip Count Pipelined

- Row_Col 425 425 17 - - 25 no
+ Product 12 12 5 2 1 5 yes

Figure 3.12: Synthesis report for the matrix multiplier, solution2

From the synthesis report shown in Figure 3.12 it is observed that the top level loop, Row_Col
has not been pipelined as loop Col/ was not flattened. It is also observed an Il of 2 was achieved
despite the target of 1.

Open the Analysis perspective by clicking on &4 Analysis o Window > Analysis
Perspective. This will also open the Performance view showing how the various operations
within the code are scheduled as clock cycles.

Expand the loops Row_Col and Product by clicking on them to obtain the view shown in

Figure 3.13.

www.zyngbook.com Designing With Vivado HLS

Exercise 3B: Design Optimisation in Vivado HLS

Current Modole : matrix mmlt

| Operation\Control Step Cc0 C1 Cc2 C3 C4 C5 Co c7 C8
1 [FRow_Col
2 indvar flatten(phi ...
3 i(phi mux)
4 3 (phi_mux)
5 exitcond flatten (icmp)
5 indvar flatten next(+)
7 exitcondl (icmp)
b j_mid2 (select)
9 i =(4)
10 i mid2 (select)
11 p_addr7(+)
12 p addrs ()
13 node_33 (write) |
14 - Praduct
15 k(phi mux)
16 exitcond (icmp)
17 k 1(+)
18 p_addrl (+)
19 p_addr3 (+)
20 p_addr4 (+)
21 a load(read)
22 b load (read)
23 tmp 7 (*)
24 prod load (read)
25 tmp_ B (+)
26 node 62 (write)
27 3 1(+)

Figure 3.13: Performance view for solution2

Note that the highlighted write operation occurs in state C3, node_33(write). Right clicking on
this cell and selecting Goto Source will highlight the associated line of code in the source file.
This is a write operation initialised as a write to a port in the RTL which occurs before any
operations in the loop, Product, can be executed. This prevents the flattening of loop Product
in to Row_Col.

Furthermore, the inability to meet the target of Initiation Interval (Il) = 1 can be explained by
considering consecutive iterations of the loop.

To show the console go to Window > Show View > Console. The console reveals the
following message (you may need to scroll to find this message):

@W [SCHED-68] Unable to enforce a carried dependency constraint (II =
1, distance = 1) between ‘store’ operation (matrix_mult.cpp:16) of
variable ‘tmp_8’ on array ‘prod’ and ‘load’ operation (‘prod_load’,
matrix_mult.cppl6) on array ‘prod’.

Designing With Vivado HLS www.zyngbook.com 81

Exercise 3B: Design Optimisation in Vivado HLS

82

There exists a dependency between iterations of the operation at line 16 of the source code,

which is the operation within the Product loop.

prod[i][j] += a[i][k] * b[k][J];

Due to the presence of the += operator, this line of code contains a read from array prod (the
aforementioned load operation) and a write to array prod (a store operation). With an Il of 1, a
succeeding Product loop iteration would occur one clock cycle after the initiation of the first
iteration. This is visualised in Figure 3.14 by pasting consecutive copies of the matrix multiplier
operations, one above the other. With Il set to 1, the highlighted overlap is observed. Arrays are
mapped to BRAM by default, and since this overlap requires a read and a write operation to be
performed on the same clock cycle, this is simply not possible as both operations cannot occur
on the BRAM at the same time. Therefore, setting the Il to 2 allows the write operation to be

completed before the read operation of the next loop iteration begins.

Current Module : matrix mult

| operation\Control Step co c1t | e2 | a3 | ea | e | cs c7 cs
1 ERow Col
2 indvar_flatten(phi_... 1 - 0
L e Iteration k
4 3 (phi_mux)
5 exitcond_flatten (icmp)
6 indvar flatren next (+)
7 exitceondl (icmp)
8 j_mid2 (select)

) is(+)

10 i_mid2 (select)
11 | p_addr7(+)

12 p_addrs (+)

13 node_33 (write)
14 EProduct

15 k (phi_mux)
16 exitcond (icmp)
17 k_1(+)
18 p_addri (+)
19 p_addr3(+)
20 p_addrd (+)
21 a_load (read)
22 b_load (read)
23 emp_7 (%)
24 prod_load (read)
25 tmp_8 (+)
26 | node 62 turive) 1
27 | 318
SRow_Col | r— I
indvar_flatten(phi_... .
I [Iteration k = 1
3 (Phi_mux)
exitcond flatten (icmp) I 5 I
indvar_flatten next (+) —
exitcondl (icmp) :-
j_mid2 (select) I Q I
= —
is(+) —
i mid2 (select) I [} I
s o 3 OVERLAP
P_addr8 (+) I — I
node_33 (write) s
- Product ~—
T ipha_mm |l @ |
exitcond (icmp) 2
k_1(+) I I
p_addr1 (+) ﬂ_’
p_addr3 (+) I —_— I
p_addzr4 (+) —
a_load (read) I N I
b_load(read)
tmp_7 (%) n
tmp_8 () —
node_62 (write) I I
I_1(4)
L —d

Figure 3.14: Consecutive iterations of Product loop with Il = 1

www.zyngbook.com Designing With Vivado HLS

Exercise 3B: Design Optimisation in Vivado HLS

(j)). Return to the Default Synthesis perspective by selecting Window > Synthesis Perspective.
Click Yes if a dialogue window appears.
We will now create a new solution which pipelines the Col loop, unrolling the Product loop to
eliminate inter-iteration dependency but at the cost of increased operators and hence
hardware cost.

(k) Create a new solution for the design by either clicking the New Solution button IEE' in the

toolbar or the menu option Project > New Solution. From the drop-down menus, ensure

solution1 is selected, as this contains no existing directives or constraints.

Options
| Copy directives and constraints from solution: solutionl -

Click Finish to create the solution.

(I) Ensure the source code matrix_mult.cpp is visible in the editor. In the Directives tab, right-
click on loop Col and select Insert Directive. From the drop-down menu, select directive type

PIPELINE, ensure (Il = 1) and click OK. The directives tab should now resemble Figure 3.15.

0= Outline | (14 Directive i3 = = O

4 @ matrix_mult
@ a
@ b
& prod
4 % Row
a 5 Col
Of HLS PIPELIME I=1

%' Product

Figure 3.15: Pipelining Column Loop in HLS

(m) Click the C Synthesis button to synthesise the RTL design. Observing the Console will show
that while Product was unrolled and loop Row was flattened. The Il target of 1 could not be
met for loop Row_Col, this time due to limitations in the resources. (You may need to scroll to

locate this message).

@W [SCHED-69] Unable to schedule €¢load’ operation (‘b_load 4’,
matrix_mult.cpp:16) on array ‘b’ due to limited memory ports.

(n) Open the Analysis perspective by clicking on &1 analysis - This will open the Performance

view. Switch to the Resource view by clicking the tab at the bottom of the screen.

Designing With Vivado HLS www.zyngbook.com 83

Exercise 3B: Design Optimisation in Vivado HLS

(0) Expand the Memory Ports to view resource sharing on the memory within the system. Your

view should look similar to Figure 3.16.

| Resource\Control Step Cco | C1 | c2

c3 | ca Cs5 c6 c7

C3

Cco

C10

1-6 HI/C Ports
7-12 FInstances

13 EHMemory Ports

84

14
15
16
17
18

b(pl)
b (p0)
a(p0d)
a(pl)
prod (p0)

19-40+ Expressions

read
read

read

read
read read
read read

read read

write

Figure 3.16: Resource sharing on memory ports of solution3

Figure 3.16 shows the operations per resource on each clock cycle. In actual fact, the 2 cycle read

operation on b beginning in C3 overlaps with those in C4 so only a single cycle is visible. There

are instances of both a and b being subjected to 3 read operations at once, which you will

remember is not possible for dual-port BRAM. It is therefore necessary to partition these arrays

into smaller sections, allowing modification of the array without altering the source code.

(p)

Return to the Synthesis perspective by clicking on 1# | Synthesis

gH—
1 in the

Create a new solution for the design by either clicking the New Solution button
toolbar or the menu option Project > New Solution. Click Finish to accept the defaults for

solution4. Note the directives will be copied from solution3.

For this solution, we will reshape the input arrays using directives. The Product loop is
accessed via loop index k, therefore arrays a and b should be partitioned along their k
dimension. Inspecting line 16 of matrix_mult.cpp it is observed that for alij[k] this is
dimension 2 and for b[k][j] dimension 1.

Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.
Right-click on variable a and select Insert Directive. Ensure the directive is configured as in

Figure 3.17, with ARRAY_RESHAPE selected as directive type and dimension specified as 2.

www.zyngbook.com Designing With Vivado HLS

Exercise 3B: Design Optimisation in Vivado HLS

Directive

ARRAY_RESHAPE -

Destination
Source File

@ Directive File

Options

variable (required): a

object (optional):

type (optional): complete A

factor (optional):

dirnension (optional): 2

Figure 3.17: Directive configurations for reshaping array a

(r) Repeat for array b, this time ensuring dimension is set to 1.

(s) Click the C Synthesis button to synthesise the RTL design. The synthesis report will open,

showing that the target Il of 1 has now been met.

-1 Latency (clock cycles)
=| Summary

Latency Interval
min max min max Type
34 34 35 35 none

= Detail
+ Instance
- Loop
Latency Initiation Interval
Loop Mame min max [teration Latency achieved target Trip Count Pipelined
- Row_Col 32 32 8 1 1 25 yES

Figure 3.18: Synthesis report for solution4

The top-level of the design takes 34 clock cycles for completion, with the Row_Col loop
outputting a sample after an iteration latency of 9. A sample is then read in every cycle (due
to an Il of 1), and after 25 counts all samples have been read in. The 34 clock cycles of this

design is therefore justified by the 25 counts plus the latency of 9, as 25 + 9 = 34.

The function then proceeds to calculate the next set of data.

Designing With Vivado HLS www.zyngbook.com 85

Exercise 3B: Design Optimisation in Vivado HLS

(t) The final optimisation in this exercise is to pipeline the function, rather than the loops within
that function for comparison. Create a new solution for the design by either clicking the New
Solution button "‘E&‘]J in the toolbar or the menu option Project > New Solution. Click Finish

to accept the defaults for solution5.

(u) Ensure the source code matrix_mult.cpp is visible in the editor, and open the Directives tab.
First, remove the previously inserted pipeline directive on loop Col. Right-click on the
directive and select Remove Directive. If a dialogue window similar to that in Figure 3.19

appears, click No.

T . - ==

% There are no directives attached to this node 'Col'.
Do you want to remove the lable?

Figure 3.19: Node re-labelling dialogue window

(v) Right-click on the top level function matrix_mult and select Insert Directive. Select PIPELINE as

the directive type and click OK.

(w) Click the C Synthesis button to synthesise the RTL design.
Vivado HLS provides a tool for comparing synthesis reports. Click the E£F button or the
menu option Project > Compare Reports.

Ensure solution4 and solution5 are added as in Figure 3.20. Click OK.

Solution Selection

Please select the solutions you want to compare

Available solutions: Selected solutions:
solutionl solution5
solution2 solutiond
rolten?

Figure 3.20: Solution selection for comparison

86 www.zyngbook.com Designing With Vivado HLS

Exercise 3B: Design Optimisation in Vivado HLS

Figure 3.21 shows the comparison of

. . . Perf. Estimat
synthesis report for solution4 (with loop eriormance BHmaes

. =1 Timing (ns)
pipelining) and solution5 (with top level J - -
Clock solutionS solutiond
function pipelining). It is observed that default Target 5.00 5.00
Estimated 4.35 4,35

pipelining the top level function results in
- Latency (clock cycles)

a design which reaches completion in ~olutiors | salufiond

fewer clocks, requiring only 13 clock cycles Latency min 24 34
. . max 24 34
to begin a new transaction, rather than 35 teval | min | 13 35
for pipelining the loop. max 13 35
However, this comes at the cost of Utilization Estimates
increased hardware utilisation due to solution$ | solutiord
BRAM_18K 0 0
unrolling of all loops within the design. A DSP4SE 125 5
trade-off is therefore necessary between FF Bl 24
LuT 546 82

system performance and the hardware
utilisation of the design, and it is possible ~ Figure 3.21: Comparison of solution4 and solution5
that a partially unrolled design may meet

the performance requirements at a reduced hardware cost.

The Zedboard, containing the Z-7020 Zynq chip, accommodates 220 DSP48E slices which
makes this device very suitable for implementing this hardware design. However the Zybo,
which contains the Z-7010 Zynq chip, only consists of 80 DSP48E slices. Solution5 requires
125 DSP48E slices indicating that pipelining the top level function of the hardware design
has increased device utilisation to the extent that the Zybo Zynq chip can no longer achieve
full implementation. It is apparent that solution4 would be suitable with reduced resource

utilisation and increased latency.

(x) This completes the exercise. Close the Vivado HLS GUI.

We will now briefly explore the concept of interface synthesis in Vivado HLS, using the matrix multiplier

function of the previous two exercises.

Designing With Vivado HLS www.zyngbook.com 87

Exercise 3C: Interface Synthesis

(@) Launch the command prompt by navigating to Start > All Programs > Xilinx Design Tools
> Vivado 2015.1> Vivado HLS > Vivado HLS 2015.1 Command Prompt.

(b) Change the working directory to C:\Zynq_Book\HLS\tut3C. This folder contains the source

and test files for a project, and also the Tcl script required to build the project, run_hls.tcl.
(c) Run the Tcl script using the command:

| Zed | vivado_hls -f run_hls_zed.tcl
vivado_hls -f run_hls zybo.tcl

M(d) To open the project in the Vivado HLS GUI enter the following command:

vivado_hls -p matrix_mult_prj

And press Enter. This will open the Vivado HLS GUI for the project, which we will utilise in the next

exercise.

(e) Open the source file

Interface
matrix_mult.cpp from the
-] Summary
Source section of the RTL Ports Dir Bits Protocol Source Object C Type
Explorer tab and click ap_clk in 1 ap_ctrl_hs matro_mult return value
ap_rst in 1 ap_ctrl_hs matrix_mult return value
the CSyntheSiS button to ap_start in 1 ap_ctrl_hs matriz_rmult return value
synthesise the RTL ap_Flune out 1 ap_ctrl_hs matr?x_mult return value
ap_idle out 1 ap_ctrl_hs matri_mult return value
design. When the ap_ready out 1 ap_ctrl_hs matri_mult return value
synthesis report opens, a_address0 out 5 ap_memory a array
a_cell out 1 ap_memory a array
scroll to the Interface a_q0 in & ap_memory a array
. b_addressl out 5 ap_memory b array
section. b_ced out 1 ap_memory b array
b_gl in 8 ap_memaory b array
prod_addressd out 5 ap_memory prod array
Note that the inpUt prod_cel out 1 ap_memory prod array
arrays a and b, and the prod_wel out 1 ap_memory prod array
prod_d out 16 ap_memory prod array

resultant product array
prod have been Figure 3.22: Interface summary for solution1

implemented using the

88 www.zyngbook.com Designing With Vivado HLS

Exercise 3C: Interface Synthesis

ap_memory protocol. This is inferred from the C++ source code, as the array type corresponds

with the structure of memory.

Input arrays a and b are both 8 -bit signals on ports a_g0and b_q0. The output array, prod is
a 16-bit signal on port prod_dO0. Each signal has a corresponding 5-bit address port,
designated as a_address0, b_address0 and prod_address0.

The protocol also requires clock enable signals (a_ce0 and b_ce0), and a write enable

(prod_we0).

Since the design requires more than one clock cycle to complete and is therefore
synchronous, a clock and reset port have been synthesised as ap_clk and ap_rst, and both are

1-bit signals.

A block level control protocol with handshaking, ap_ctrl_hs, has also been implemented
(ap_start, ap_done, ap_idle and ap_ready).
The ap_start input is asserted, prompting block operation. This produces three output
control signals indicating the stage of operation.
ap_ready indicates that the block is ready for new inputs.
« ap_idleis an indication that data is currently processing data.

ap_done indicates that output data has been processed and is available.

Recalling Exercise 3B, the arrays were partitioned to reduce each into several smaller sections
with expanded ports, control signals and implementation resources. This increased the

bandwidth. This directly influenced the interface synthesis through use of directives.

This concludes this introduction to the design flow of Vivado HLS. This tool will be used further in future

exercises, and synthesised RTL will be implemented as part of a larger functional model.

Designing With Vivado HLS www.zyngbook.com 89

Exercise 3C: Interface Synthesis

90 www.zyngbook.com Designing With Vivado HLS

The Zynq Book Tutorials

IP Creation

vl.4, June 2015

91

Revision History

92

Date Version Changes
22/10/2013 1.0 First release for Vivado Design Suite version 2013.3
28/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4
06/05/2014 1.2 Updated for changes in Vivado Design Suite version 2014.1
09/04/2015 1.3 Updated for changes in Vivado Design Suite version 2014.4
01/05/2015 13.1 ggggtr?dsﬁtgnsgjr(i?oﬁyzb& ji/elopment board for Vivado
19/06/2015 14 Updated for changes in Vivado Design Suite Version 2015.1

www.zyngbook.com IP Creation

Introduction

The exercises in this tutorial will guide you through the process of creating custom IP modules, that are
compatible with Vivado IP Integrator, from a variety of different sources. All created IP will be compatible
with the Xilinx supported AXI-Lite interface, and will be connected as slave devices when implemented in

Vivado IP Integrator.
All TP creation methods that are covered here coincide with those covered in the book:

« HDL
e MathWorks HDL Coder

« Xilinx Vivado HLS
The tutorial is split into three exercises, and is organised as follows:

Exercise 4A - In this exercise, HDL will be used to create a controller which will allow the LEDs on the Zynq
development board to be controlled by software running on the PS. The Create and Package IP Wizard will
be used to create an AXI-Lite interface wrapper which the LED control process and interface will be added

to. The IP packaging process will then be used to create an IP block which is compatible with IP Integrator.

Exercise 4B - HDL Coder, the MathWorks HDL generation tool, will be explored in this exercise. A Least
Mean Squares (LMS) adaptive filter will be created and tested in the Simulink workspace. The LMS design
will then be used to generate HDL code by invoking the HDL Coder Workflow Advisor, where the option
to generate a Xilinx IP Core will be selected. The various stages of the workflow will verify the design to
ensure that it is HDL Coder compliant and produce the HDL code in a format that is compatible with IP
Integrator. Note: You will require MATLAB, Simulink and HDL Coder in order to complete Exercise 4B.

Exercise 4C - In this final exercise, Vivado HLS will be used to create an IP core for a Numerically Controlled
Oscillator (NCO). An existing C-code algorithm will be simulated for testing, and run through the various

stages of synthesis in order to create an IP Integrator compatible IP core.

IP Creation www.zyngbook.com 93

Exercise 4A: Creating IP in HDL

94

With Zynq devices comprising of both PS and PL parts, most IP that is created to run in PL should
be able to communicate with software running on the PS. This requires that IP should be

packaged with an interface that is compatible with the PS (in this case the AXl interface).

When creating IP in HDL, Vivado provides a set of AXI interface templates which can be created
and customised via the Create and Package IP Wizard. The wizard, as the name suggests, facilitates
two major functions: the creation of AXI4 IP peripherals; and the packaging of existing source files

into an IP package which is compatible with the IP Integrator tool.

In this exercise we will actually be making use of both of these features to firstly create an AXI4-
Lite IP template to which we will add functionality to allow the LEDs on the Zynq development
board to be controlled via a software application running on the Zynq PS. Once the functionality
has been added to the template, the source files will be packaged into an IP Integrator

compatible IP block which will be included in a simple Zynq processor system.
We will start by creating a new Vivado project.

(@) Launch Vivado by double-clicking on the Vivado desktop icon: Ao or by navigating to Start
> All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado 2015.1

(b) Select Create New Project from the Getting Started screen.
(c) The New Project dialogue will open. Click Next.

(d) At the Project Name dialogue, enter led_controller as the Project name and C:/Zynq_Book
as Project location.
Make sure that you select the option to Create project subdirectory. Ensure that all options

match Figure 4.1.

Project name: | led_controller

Project location: C:nynq_Bnu:uId |:|

| Create project subdirectory

Figure 4.1: Vivado Project Name specification - led_controller

Click Next.

www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

(e) Select RTL Project at the Project Type dialogue, and ensure that the option Do not specify

sources at this time is not selected:

@ BTL Project
~ You will be able to add sources, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

[] Do not specify sources at this time

Click Next.
(f) Select VHDL as the Target language in the Add Sources dialogue.
If existing sources, in the form of HDL or netlist files, were to be added to the project they
could be imported at this stage.
As we do not have any sources to add to the project, click Next.
(g) The Add Existing IP (optional) dialogue will open.
If existing IP sources were to be included in the project, they could be added here.

As we do not have any existing IP to add, click Next.

(h) The Add Constraints (optional) dialogue will open.
This is the stage were any physical or timing constraints files could be added to the project.

As we do not have any constraints files to add, click Next.

(i) The Default Part dialog will open. Here we will be selecting the Zynq part which we are

targeting.

m Select Boards from the

Specify pane, ZedBoard Default Part

Choose & default Xiinx part or board for your project. This can be changed later.
Zynq Evaluation and

. Select: €% Parts | Board
Development Kit as the e =

Vendor: All -

Display Name, and finally

Display Name: | ZedBoard Zynq Evaluation and Dev...

select the Board Rev which BoardRey: |Latest i

Reset All Filters

you have. In Figure 4.2 search:

version D of the ZedBoard Display Name Vendor Board Rev Part

[ZedBoerd 2ynq Evaluation and Development Ktfem avnet.com |4 [© xc72020cig 841
has been selected.

4 1

[< Back ” Next >] Finish

Click Next.

Figure 4.2: Zedboard Vivado Default Part dialogue

IP Creation www.zyngbook.com 95

Exercise 4A: Creating IP in HDL

Ensure you have carried out the Zybo board part set-up procedure at the beginning of
Exercise 1A. Select Boards from the Select dialogue click Zybo from the Display Name list and
All from the Board Rev list, as shown in Figure 4.3. Select the appropriate revision for your

board (in this case Rev. B.3 has been selected).

B M

Default Part
Choose a default Xilinx part or board for your project. This can be changed later.

Select: @ Parts | [Boards
4 Filter

Vendor: digilentinc. com -

Display Name: | Zybo -

Board Rey: Al -

Reset Al Filters

Search:

Display Mame Vendor Board Rev Part

(b ligniconps |

Figure 4.3: Zybo Default Part Dialogue Options

Click Next.

M (j) Review the New Project Summary dialogue, and click Finish to create the project.
With the new project created, we can begin the process of creating our HDL-based IP.

(k) From the menu bar, select Tools > Create and Package IP..., as in Figure 4.4, to launch the

Create and Package IP Wizard.

Tools | Window Layout Wiew Help

Report b
Create and Package IP...

Create Interface Definition...

Run Td Script. ..

Property Editor Ctrl+J

LY

Assodate ELF Files...

Compile Simulation Libraries...

Figure 4.4: Create and Package IP menu bar selection

() The Create and Package IP Wizard dialogue will launch, as shown in Figure 4.5.

96 www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

Create and Package IP
This wizard can be used to accomplish two tasks:

Package a new IP for the Vivado IP Catalog

This wizard will guide you through the process of creating a new Vivado IP using source files and

information from your current project, block design or spedfied directory.

Create a new AXI4 Peripheral

This wizard will guide you through the process of creating a new AXI4 peripheral which includes
HDL, driver, software test application, IP Integrator BFM simulation and debug demonstration

design.

XILINX

ALL PROGRAMMABLES

Click Next to continue

Finish

Figure 4.5: Create and Package IP Wizard dialogue

Click Next.

The Choose Create Peripheral or Package IP dialogue (Figure 4.6) is where we specify whether to

create a new peripheral template file or to package existing source files into an IP core.

In our case we want to create a new IP template.

(m) Select Create new AXI peripheral, as shown in Figure 4.6.

ﬁ-f Create and Package New IP

Create Peripheral, Package IP or Package a Block Design
Flease select one of the following tasks.

Packaging Options

Package your current project
LUise the project as the source for creating a new IP Definition.
Mote: All sources to be packaged must be located at or below the specdified directory.

Package a block design from the current project
Choose a blodk design as the source for creating a new IP Definition.

7 Package a specified directory
~ Choose a directory as the source for creating a new IP Definition.

Creste AXI4 Peripheral

@ Createanew AXI4 peripheral

design.

l < Back][Mext =]

Create an AXI4 IP, driver, software test application, IP Integrator AXI4 BFM simulation and debug demonstration

Finish

Cancel

Figure 4.6: Choose Create or Package IP dialogue

IP Creation www.zyngbook.com

97

Exercise 4A: Creating IP in HDL

98

Click Next.

The Peripheral Details dialogue allows you to specify the Vendor, Library, Name and Version
(VLNV) information, as well as other details, for the new peripheral, leaving the IP Location as the

default.

(n) Fill in the details as shown in Figure 4.7.

" Create and Package Mew IP l & ﬁ
J B

Peripheral Details

Specify name, version and description for the new peripheral ‘
Mame: led_controller
Version: 1.0

Display name: |led_controller_w1.0
Description: |led_controller_w1.0
IP location: C:Eynq_BDDKﬁp_repD| B

[] Overwrite existing

Figure 4.7: Peripheral Details dialogue

Click Next.

The Add Interface dialogue allows you to specify the AXI4 interface(s) that will be present in your

custom peripheral. Here you can specify:

« Number of interfaces
« Interface type (AXI-Lite, AXI-Stream or AXI-Full)
- Interface mode (slave or master)

- Interface data width

Features specific to individual interface types will also be available when the corresponding type

is selected.

As our peripheral is a simple controller for the LEDs which only requires single values to be

transferred to it, an AXI-Lite slave interface is sufficient. Only one memory mapped register is

www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

required for our simple controller, but as the minimum number that can be specified in the

dialogue is 4, we will choose that.

(0) Specify the Add Interface dialogue as shown in Figure 4.8.

-
gl"‘ Create and Package New IP | = | | 28 |
Add Interfaces
Add AXI4 interfaces supported by your peripheral '
|| Enable Interrupt Suppart g = Name 500 AXI
. e Interfaces Interface Type Lite -
------ it
Interface Mode Slave -

“l=s500_sx1 Data Width (Bits) |32 -
/ Size (Bytes) | 54

Memory Size

led_controller 1.0
Mumber of Registers | 4 [4..517] I
4 k
l < Back ” Next = Finisl
Figure 4.8: Add Interface dialogue
Click Next.

(p) Review the information in the Create Peripheral dialogue, which details the output files which
will be created.
Select the option to Edit IP. This will create the IP peripheral files and create a new Vivado
project where the functionality of the peripheral can be modified in the source HDL code, and
then packaged.

Click Finish to close the Wizard and create the peripheral template.
A new Vivado project, named edit_led_controller_v1_0, will open.

In the Sources pane, you should see two HDL source files (you may need to expand the file

selection):

A==t R|IE
=

{57 Design Sources (2
j-,m led_controller_w1_0 - arch_imp (led_controller_vi_0,vhd) (1)
-4l led_controller_v1_0_S00_A¥I_inst - led_controller vl _0_S00_AXI - arch_imp {led_controller_v1_0_500_AXI,vhd)

IP Creation www.zyngbook.com 99

Exercise 4A: Creating IP in HDL

As we specified our target language as VHDL in Step (f) earlier, the template files have been
generated in VHDL. Had we specified Verilog as the target language, Verilog source files would

have been created.

The two source files are:

« led_controller_v1_0.vhd — This file instantiates all AXI-Lite interfaces. In this case, only

one interface is present.
« led_controller_ v1_0 S00_AXl.vhd — This file contains the AXl4-Lite interface

functionality which handles the interactions between the peripheral in the PL and the

software running on the PS.

The IP Packager pane will also be open in the Workspace:

T Project Summary % | Package IP - led_controller X O

E
Packaging Steps <« || Identification ?
+ Identification Vendar: ac.uk
+/ Compatibility Library: user
« File Groups Mame: led_contraller
o Version: 1.0
+ Customization Parameters
Display name: led_controller_v1.0
+ Ports and Interfaces
Description: led_controller_v1.0

+ Addressing and Memory
Vendor display name:

& Customization GUI

Company url:
Review and Package Root directory: c:fzynq_bookfip_repofled_controller_1.0
¥ml file name: c:fzyng_bookyip_repofled_controller_1.0/component. xml
Categories

+ AXI_Peripheral

The information that we specified about our peripheral in Step (n) will be visible. The Vendor

parameter will be dependant on your computers network domain and can be changed.

We can now add the functionality to our led_controller peripheral. We will be adding a new
output port to the peripheral template to allow it to connect to the LED pins on the Zynq device,

as well as assigning the value received from the Zynq PS to the new output port.

100 www.zyngbook.com IP Creation

IP Creation

Exercise 4A: Creating IP in HDL

() Open led_controller_v1_0_S00_AXl.vhd by double-clicking on it in the Sources pane. The

file will open in the Workspace.

Scroll down until you see the following comment in the entity port declaration:

-- Users to add ports here

Add the following port definition directly below the comment:

LEDs_out : out std_logic vector(7 downto 0);

This creates a new output port with a width of 8-bits (a single bit to represent each of the LEDs
on the ZedBoard).

Scroll to the bottom of the file. You should see the following comment:

-- Add user logic here

and add the following port/signal assignment:

LEDs _out <= slv_reg@(7 downto @);

This assigns the value that is received from the Zynq PS (stored in the signal slv_reg0) to the

output port that we created in the previous step.

Scroll down until you see the following comment in the entity port declaration:

-- Users to add ports here

Add the following port definition directly below the comment:

LEDs_out : out std_logic_vector(3 downto 0);

This creates a new output port with a width of 4-bits (a single bit to represent each of the LEDs
on the Zybo).

Scroll to the bottom of the file. You should see the following comment:

-- Add user logic here

and add the following port/signal assignment:

LEDs _out <= slv_reg@(3 downto 0);

This assigns the value that is received from the Zynq PS (stored in the signal slv_reg0) to the

www.zyngbook.com 101

Exercise 4A: Creating IP in HDL

Resume[@)

(s)

102

output port that we created in the previous step.

Save the file by selecting File > Save File from the Menu Bar, or using the keyboard shortcut
Ctrl+S.

Open led_controller_v1_0.vhd by double-clicking on it in the Sources pane. The file will

open in the Workspace.

We must once again create a new output port to the top-level source file, and map it to the

equivalent port that we created in the AXI4-Lite interface file in the previous steps.

Scroll down until you see the following comment in the entity port declaration:

-- Users to add ports here

and add the following port definition directly below the comment:

LEDs_out : out std_logic_vector(7 downto 0);

As we added a new port to the AXI4-Lite interface file, we must also add it to the component
declaration in the top-level file.

Scroll down until you see the comment:

-- component declaration

A few lines further down you will see the component port declaration:

port (

Inside the port declaration (below the “port (” line), add the following output port
definition:

LEDs_out : out std _logic_vector(7 downto @);

Scroll down until you see the following comment in the entity port declaration:

-- Users to add ports here

and add the following port definition directly below the comment:

LEDs_out : out std_logic_vector(3 downto 0);

www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

As we added a new port to the AXI4-Lite interface file, we must also add it to the component
declaration in the top-level file.

Scroll down until you see the comment:

-- component declaration

A few lines further down you will see the component port declaration:

port (

Inside the port declaration (below the “port (“ line), add the following output port
definition:

LEDs_out : out std _logic_vector(3 downto 0);

MFinally, we must add a port mapping between the LED output ports of the top-level file and the
AXl4-Lite interface file.

(t) Scroll down until you see the comment:

-- Instantiation of Axi Bus Interface S00_AXI

A few lines further down you will see the component port map:

port map (

Inside the component port map (below “port map (“line), add the following port map:

LEDs_out => LEDs_out,
(u) Save thefile.

Now that we have made the necessary modifications to the peripheral source files, we must

repackage the IP to merge the changes.

(v) Return to IP Packager by selecting the Package IP - led_controller tab in the Workspace:

X Project Summary % |1 Package IP - led controller %

IP Creation www.zyngbook.com 103

Exercise 4A: Creating IP in HDL

104

IP Packager will detect the changes to the source files, and the areas which need refreshed will be
highlighted with the following icon: “#. You should see that the following two areas of interest
need refreshed:

& Customization Parameters

Ports and Interfaces

(w) Select Customization Parameters in the IP Packager pane.

You should see the following information message at the top of the pane:

\g) Merge changes from Customization Parameters Wizard

Click Merge changes from Customization Parameters Wizard

This will update the IP Packager information to reflect the changes made in the HDL source
files.

NOTE: This process updates IP Packager information for all areas. You should see that the
area of Ports and Interfaces no longer needs updated, and the # icon has now been

removed.
To verify that IP Packager has updated the Ports and Interfaces area, we will open it and check.

(x) Select Ports and Interfaces from the IP Packager pane.

You should notice that the LEDs_out port that we added to the source files has been added
to the IP Ports pane and has a length of 8:

Mame Int... Enablement Dependency IsDedaration Direction Driver Value Size Left Size Left Dependency Size Right Size Right Dependency
+-{l} S00_AXI slave

+ | Clock and Reset Signals

{7 LEDs_out out 7 a

You should notice that the LEDs_out port that we added to the source files has been added
to the IP Ports pane and has a length of 4:

Mame Int... Enablement Dependency Is Dedaration Direction Driver Value Sizeleft Size Left Dependency Size Right Size Right Dependenc
+-{I} S00_AXI slave

+ | Clock and Reset Signals

47 LEDs_out out 3 0

The final step in creating our new IP peripheral, is to package the IP.

(y) Select Review and Package form the IP Packager pane.

www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

(2) Inthe After Packaging panel, click edit packaging settings at the bottom:

After Packaaing

o An archive will not be generated. Use the settings link below to change your preference

o Project will be removed after completion

I edit packaging settings I

(@a)In the Automatic Behaviour panel, enable the option to Create archive of IP, Close IP
Packager window and to Add IP to the IP Catalog of the Current Project. You may Delete
project after packaging if you wish (does not have an impact on the remainder of this
tutorial).

Automatic Behavior

After Packaging

Create archive of IP

Add IP to the IP Catalog of the current project

Close IP Packager window

Edit IP in IF Packager

Delete project after packaging

This makes a ZIP file archive of the packaged IP and close IP Packager once finished.

(ab)Click OK to apply the setting.

(ac) Review the information provided in the Review and Package window, and click Re-Package

IP.
(ad) A dialogue box will appear asking if you want to close the project, click Yes.

(ae) The changes made to the IP peripheral will be included in the repackaged IP, and the Vivado

project will close.

We will now return to our original Vivado project, and create a simple Zynq processor block

design to check that the functionality of our LED controller peripheral.

To start, we will create a new Block Design and add the IP peripheral which we just created to the

design.

(af) In the Flow Navigator window, select Create Block Design from the IP Integrator section.

Enter led_test_system in the Design name box, and click OK to create the blank design.

IP Creation www.zyngbook.com 105

Exercise 4A: Creating IP in HDL

106

(ag)Right-click anywhere in the blank canvas, and select Add IP. Alternatively, use the keyboard
shortcut Ctrl+l. This will bring up to pop-up IP Catalog window.
Enter led in the Search box, and double-click led _controller_v1.0 to add an instance of the

LED controller IP to the design.

An led_controller_v1_0 block will now be present in the block design, as shown in Figure 4.9.

led_controller_0

| 4=500_AXI
s00_axi_adk LEDs_out[7:0]
s00_axi_aresetn

led controller_v1.0 (Pre-Production)

Figure 4.9: led_controller block

The 8-bit LEDs_out port that we added to the peripheral is present on the right side of the block.

To enable the peripheral to connect to the LEDs on the ZedBoard, we must make the LEDs_out
port external. This allows the output port to be connected to specific physical pins on the Zynq

device, which are connected to the LEDs.

Hover the mouse pointer over the LEDs_out interface (the little black stub next to the
interface name) on the led_controller block until the cursor changes to a pencil. Right-click
and select Make External. Alternatively, select the interface and use the keyboard shortcut
Ctrl+T.

The block design should now resemble Figure 4.10.

led_controller_0

|||4=500_Axt
s00_axi_adk LEDs_out[7:0] LEDs_out[7:0]
s00_axi_aresetn

led_controller_v1_0

Figure 4.10: led_controller block with external port

An led_controller_v1_0 block will now be present in the block design, as shown in Figure

www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

4.11. The 4-bit LEDs_out port that we added to the peripheral is present on the right side of
the block.

led_controller_0

4= 500_AXI
s00_axi_adk LEDs out[3:0]
s00_axi_aresetn

led controller_v1.0 (Pre-Production)

Figure 4.11: led_controller block

To enable the peripheral to connect to the LEDs on the Zybo, we must make the LEDs_out port
external. This allows the output port to be connected to specific physical pins on the Zynq device,

which are connected to the LEDs.

Hover the mouse pointer over the LEDs_out interface (the little black stub next to the
interface name) on the led_controller block until the cursor changes to a pencil. Right-click
and select Make External. Alternatively, select the interface and use the keyboard shortcut
Ctrl+T.

The block design should now resemble Figure 4.12.

led_controller_0

| 4= 500_AXI
s00_axi_adk LEDs_out[3:0] LEDs_out[3:0]
s00_axi aresetn

led_controller_v1.0 (Pre-Production)

Figure 4.12: led_controller block with external port

MThe next step is to add a Zynq Processing System block so that the LED Controller can be

connected to it.

Add an instance of the Zynq7 Processing System, using the same procedure as in Step (ag).

The Designer Assistance message at the top of the canvas will appear:

I_a Designer Assistance available. Run Block Automation Run Connection Automation

IP Creation www.zyngbook.com 107

Exercise 4A: Creating IP in HDL

108

Click Run Block Automation.
An information message will appear. Ensure that Apply Board Preset is selected, and click OK.
This will make all necessary modifications to the Zynq processing system that relate to the board

preset and make required external connections.

We must now connect the LED Controller to the Zynq Processing System. This step can also be

carried out using Designer Assistance.

(ah)In the Designer Assistance message, click Run Connection Automation.
An information message will appear, select led_controller_0/S00_AXI and click OK.
This will add some additional blocks to the design which are required to connect the LED

Controller to the Zynq Processing System.
Our block design is now complete.

(ai) Validate the design by selecting Tools > Validate Design from the Menu Bar. Alternatively,
select the Validate Design button, 5}, from the Main Toolbar, or use the keyboard shortcut
Fé.
Dismiss the Validate Design message by clicking OK.

We can now generate the HDL files for the design.

(aj) In the Sources pane, right-click on the led_test_system block design and select Create HDL
Wrapper.
Select Let Vivado manage wrapper and auto-update and click OK.

This will create the top-level HDL file for the design.

We must now connect the LEDs_out port of the design to the correct pins on the Zynq device.

This is done through the specification of constraints in an XDC file.

(ak) In the Flow Navigator window, select Add Sources from the Project Manager section.
The Add Sources dialogue will open.

Select Add or Create Constraints, and click Next.

(al) Click the == symbol and then click Create File... as shown in Figure 4.13.

www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

i wasee N = |

Add or Create Constraints
Specify or create constraint files for physical and timing constraint to add to your project. '

Specify constraint set: | &= constrs_1 (active) -

Add Files...

Create Fle... ress the = button to Add Files or Create File

Copy constraints files into project

Figure 4.13: Add or Create Constraints Dialogue Window

The Create Constraints File dialogue will open.
Select XDC as the File type and enter led_constraints as the File name.
Click OK.
(am)Click Finish to create the file and close the dialogue.
(an)In the Sources tab, expand the Constraints entry and open the newly created XDC file by
double-clicking on led_constraints.xdc.

The file will open in the Workspace.

m Add the following lines to the constraints file. Alternatively, they can be copied from the
source file available at C:\Zynq_Book\sources\zedboard\led_controller.
This connects each individual bit of the LEDs_out port to a specific pin on the Zynq device.

The specific pins are connected to the LEDs on the Zedboard.

IP Creation www.zyngbook.com 109

Exercise 4A: Creating IP in HDL

set_property
set_property
set_property
set_property
set property
set property
set property
set_property
set_property
set_property
set property
set property
set property
set_property
set_property
set_property

PACKAGE_PIN T22
TOSTANDARD LVCMOS33
PACKAGE_PIN T21
TOSTANDARD LVCMOS33
PACKAGE_PIN U22
IOSTANDARD LVCMOS33
PACKAGE_PIN U21
IOSTANDARD LVCMOS33
PACKAGE_PIN V22
IOSTANDARD LVCMOS33
PACKAGE_PIN W22
IOSTANDARD LVCMOS33
PACKAGE_PIN U19
TOSTANDARD LVCMOS33
PACKAGE_PIN U14
TOSTANDARD LVCMOS33

rr rh - rhrhrhrhrnrH e

get ports
get ports
get ports
get ports
get ports
get ports
get ports
get_ports
get_ports
get_ports
get ports
get ports
get ports
get ports
get ports
get ports

{LEDs_out[0]}]
{LEDs_out[0]}]
{LEDs_out[1]}]
{LEDs_out[1]}]
{LEDs_out[2]}]
{LEDs_out[2]}]
{LEDs_out[3]}]
{LEDs_out[3]}]
{LEDs_out[4]}]
{LEDs_out[4]}]
{LEDs_out[5]}]
{LEDs_out[5]}]
{LEDs _out[6]}]
{LEDs_out[6]}]
{LEDs_out[7]}]
{LEDs_out[7]}]

Add the following lines to the constraints file. Alternatively, they can be copied from the

source file available at C:\Zynq_Book\sources\zybo\led_controller:

set property
set property
set property
set property
set property
set property
set property
set property

PACKAGE_PIN M14
TOSTANDARD LVCMOS33
PACKAGE_PIN M15
TOSTANDARD LVCMOS33
PACKAGE_PIN G14
TOSTANDARD LVCMOS33
PACKAGE_PIN D18
IOSTANDARD LVCMOS33

[
[
[
[
[
[
[
[

get ports
get ports
get ports
get ports
get ports
get ports
get ports
get ports

{LEDs_out[0]}]
{LEDs_out[0]}]
{LEDs_out[1]}]
{LEDs_out[1]}]
{LEDs_out[2]}]
{LEDs_out[2]}]
{LEDs_out[3]}]
{LEDs_out[3]}]

This connects each individual bit of the LEDs_out port to a specific pin on the Zynq device.

The specific pins are connected to the LEDs on the Zybo.

M (ao)Save the constraints file.

110

Our simple design is now complete. We can now generate a bitstream.

(ap)In Flow Navigator, select Generate Bitstream from the Program and Debug section.

If a dialogue window appears prompting you to save your design, click Save.

www.zyngbook.com

IP Creation

Exercise 4A: Creating IP in HDL

A dialogue window may open requesting that you launch synthesis and implementation
before starting the Generate Bitstream process. If it does, click Yes to accept.
The combination of running the synthesis, implementation and bitstream generation
processes back-to-back may take a few minutes, depending on the power of your computer
system.

(ag)When bitstream generation is complete a dialogue window will open to inform you that the
process as been completed.

Select Open Implemented Design, and Click OK.

With the bitstream generation complete, the final step in Vivado is to export the design to the
SDK, where we will create the software application that will allow the Zynq PS to control the LEDs

on the Zynqg development board.

(ar) Select File > Export > Export Hardwatre... from the Menu Bar.
The Export Hardware for SDK dialogue window will open. Ensure that the option to Include

bitstream is selected, and Click OK.

(as) Launch the SDK in Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.
The SDK will launch.

(at) Once the SDK has launched, create a new Application Project by selecting File > New >
Application Project from the Menu Bar.
In the New Project dialogue, enter LED_Controller_test as the Project name.
By default the option to create a new board support package will be selected.

Click Next.

(au)In the Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the peripheral in the previous stages of this exercise that
a set of software driver files were generated. We must now point the SDK to those driver files. This

is done by adding a new repository to the SDK project.

(av) Navigate to Xilinx Tools > Repositories in the Menu Bar.

In the Repositories Preferences window, click on New, as shown in Figure 4.14.

IP Creation www.zyngbook.com 111

Exercise 4A: Creating IP in HDL

112

type filter text Add, remove or change the order of SDK's software repositories.

> General
> Ant

Local Repositories (available te the current werkspace)

> CfC++
> Help
> Install/Update
> Java
» Remote Systemns
» Run/Debug
> Team
Terminal

Remove
Up
Down

Relative

a Kilinx 50K

BootImage Global Repositories (available across workspaces)

BSP Preferences

Flash Programming
Hardware Specification
Leg Information Level
Repositories

XMD Startup

SDK Installation Repositories

Ce/Xilinx/SDK/2015.1/ data\embeddedsw

Rescan Repositories

Mote: Local repository settings take precedence over global repository settings.

Restore Defaults] [

Apply]

Cancel

Figure 4.14: SDK Repository Peripherals window

(aw)Browse to the directory:
C:\Zynq_Book\ip_repo\led_controller_1.0
as shown in Figure 4.15, and click OK.

(ax) Close the Repository Preferences window by clicking
OK.

Upon closing the preferences window, SDK will
automatically scan the repository and rebuild the project

to include the driver files.

We must now check that the newly imported driver has

been assigned to the LED Controller peripheral.

www.zyngbook.com

Choose a repository directory, A repository directory
typically contains the 'drivers’, 'bsp’ or 'sw_services'
sub-directories,

4 ip_repo
4 | led_controller_1.0
J bd
J drivers
. example_designs
. hdl
J xgui

> L led_controller

4 | 1

Folder: led_controller_1.0

[Make Mew Folder] [

Figure 4.15: led_controller repository
selection

IP Creation

Exercise 4A: Creating IP in HDL

(ay) The system.mss tab should be open in the Workspace. If it is not, open it by expanding

LED_Controller_test_bsp in Project Explorer and double-clicking on system.mss.

(az) At the top left of the system.mss tab, click Modify this BSP’s Settings.

The Board Support Package Settings window will open, as in Figure 4.16.

@ Board Support Package Settings |E| | = |
Board Support Package Settings
Control various settings of your Board Support Package. "@
a4 Overview
LED_Controller_test_bsp
standalone
4 drivers 05 Type: standalone Standalone is a simple, low-level software layer. It provides
psT_cortexad_0 50 access to basic processor features such as caches, interrupts and
- - 05 Version: e exceptions as well as the basic features of a hosted environment,

such as standard input and output, profiling, abort and exit.

Target Hardware
Hardware Specification: C:\Zyng_Book\led_controller\led_controller.sdik\led_test_systern_wrapper_hw,

Processor: ps7_cortexad_0

Supported Libraries

Check the box next to the libraries you want included in your Board Support Package.You can
configure the library in the navigator on the left.

MName Wersion Description
[hwipl4l 1.0 IwIP TCP/IP Stack library: lwIP v1.4.1
[xilffs 3.0 Generic Fat File System Library
[xilflash 4.0 Kilinx Flash library for Intel/AMD CFI compliant paral...
[xilisf 51 Hilinx In-system and Serial Flash Library
[xilmfs 20 Kilinx Memaory File System
[xilrsa 11 Kilinx R5A Library
[xilskey 20 Hilinx Secure Key Library
'@:‘ [QK] I Cancel

Figure 4.16: Board Support Package Settings window

(ba)Select drivers from the left-hand menu. From the list of components in the Drivers pane,
identify led_controller_0 and ensure led_controller is selected from the drop-down menu

in the Driver column, as shown in Figure 4.17.

IP Creation www.zyngbook.com 113

Exercise 4A: Creating IP in HDL

Drivers

The table below lists all the components found in your hardware system. You can modify the driver (er its version)
assigned for each component. If you do not want to assign a driver to a component or peripheral, please choose 'none',

Component Component Type Driver Drriver Version
cpu_cortexald 21
led_controller - 1.0

nocne 20
generic 20

led_controller

2.0
2.0

Figure 4.17: LED Controller driver selection

Click OK.
The project will now rebuild.

We can now create a simple C application to control the LEDs. In this instance we will be

importing a pre-written source file.

(bb)In Project Explorer, expand LED_Controller_test and right-click on src. Select Import from
the drop-down menu.

In the Import window, expand General and double-click on File System.

m Click Browse in the top right corner, and navigate to
C:\Zynq_Book\sources\zedboard\led_controller. Click OK.

In the right-hand panel, select led_controller_test_tut_4A.c and click Finish.

Click Browse in the top right corner, and navigate to
C:\Zynq_Book\sources\zybo\led_controller. Click OK.

In the right-hand panel, select led_controller_test_tut_4A.c and click Finish.

w The project will rebuild to include the new source file.

Open led_controller_test_tut_4A.c and examine the functionality.

Before launching the application on the Zynq development board, we must program the Zynq

PL and create a new terminal connection.

114 www.zyngbook.com IP Creation

Exercise 4A: Creating IP in HDL

(bc)From the Menu Bar, select Xilinx Tools > Program FPGA.
The Bitstream entry should already be populated with the corresponding bitstream that we
exported from Vivado earlier.
Click Program, to program the Zynq PL.
NOTE: Once the device has successfully been programmed, the DONE LED on the ZedBoard
will turn blue. Similarly the DONE LED on the Zybo will turn green.

(bd)Select the Terminal tab from the Console window at the bottom of the workspace, as in

Figure 4.18.
t Problems | 4% Tasks | & Conscle | El Properties| <% Terminal 53 =0
P 5
Mo Connection Selected o = I A | = =
Connect icon Terminal tab
4 1] b

Figure 4.18: SDK Terminal tab

(be)Click the Connect icon (as highlighted in Figure 4.18).

(bf) The Terminal Settings window will open. Configure T

the settings as specified in Figure 4.19. View Title: Terminal
Encoding: 150-8858-1

NOTE: The value of the Port entry will vary depending
Connection Type:
ISeriaI

on which the USB UART cable is connected to.

In order to determine this value on a Windows S

system, open the Device Manager and identify the Port: COM3

COM port (may be named ‘USB Serial Port’). Baud Rate: (115200
Data Bits: IE

(bg)Click OK to initiate the new Terminal connection.

Stop Bits: Il

Parity: INone

Flow Control: INone

Timeout (sec): 5

Figure 4.19: Terminal Settings

IP Creation www.zyngbook.com 115

Exercise 4A: Creating IP in HDL

Now that the Zynq PL is programmed, and the Terminal connection has been created, we can

program the Zynq PS with our software application.

(bh)In Project Explorer, right-click on LED_Controller_test and select Run As > Launch on

Hardware (GDB), as shown in Figure 4.20.

[Project Explorer &2
4 =5 LED_Controller_test

> g;-? Binaries
> [at) Includes
» = Debug
> = srC
s @ led_controller_t
a @ LED_Controller_test
> 1 BSP Documents
[psi_cortexad 0
| & Makefile
| Hp, system.mss
a 3 led_test_system_wr,
2= drivers
1= led_test_system
|=| led_test_system
[ps7_init_gpl.c
[ps7_init_gpl.h
[ps7_init.c
[ps7_inith
@ ps7_init.html
1= psT_init.tcl
|5 system.hdf

4 Target Connections &2

_L Local [default]
== Auto Discovered

116

C. &

fﬁ

B
)
&

New

Go Into
Open in New Window

Copy
Paste

Delete
Source
Move...

Rename...

Import...
Export...

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Projects

Build Configurations
Make Targets

Index

Show in Remote Systems view

Profiling Tools
Convert To...
Profile As
Debug As

Run As

Team

Compare With

Restore from Local History...

Create Boot Image
Change Referenced BSP
Generate Linker Script

Ctrl+C
Ctrl+V
Delete

F2

F5

=] §§>| ¥ Y= g

|4 system.hdf

& /* led_test.c[]

| Hp, system.mss @ led_controller_t

/* Generated driver function for led_cont
#include "led_controller.h”
#include "xparameters.h”

// Define maximum LED value (2°8)-1 = 255
#define LED_LIMIT 255

/{ Define delay length

#define DELAY 1@eae0ee

/* Define the base memory address of the
#define LED_BASE XPAR_LED CONTROLLER_@_S@

/* main function */
= int main(void){
/* unsigned 32-bit variables for stor
u32 led_val = @;
int i=8;

xil printf("led_contreller IP test be
xil_printf("-----mmmmmm oo

/* Loop forever */

while(1){

while(led val<=LED_LIMIT){
/* Print value to termina
xil printf("LED value: ¥d
/* Write value to led_con
LED_CONTROLLER_mkiriteReg(
/* increment LED value */
led_val++;
/* run a simple delay to
for(i=8;i<DELAY;i++);

% Reset LED value to zero */
led val = @;
}
return 1;
GiD:B 1 Launch on Hardware (GDE) I
S-F 2 Launch on Hardware (System Debugger on QEMU)

3 Launch on Hardware (System Debugger)
4 Local C/C++ Application

5 Remote ARM Linux Application

6 Start Performance Analysis

Run Configurations...

Figure 4.20: Run Application on hardware

www.zyngbook.com

IP Creation

Exercise 4A: Creating IP in HDL

(bi) Switch to the Terminal tab of the Console window, and confirm that the LED value is being

output, as in Figure 4.21.

(£ Problems | ¥ Tasks | & Console | =l Properties | & Terminal &2

Serial (COM3, 115200, 8,1, Mone, Mone - CONMECTED] - Enceding: (150-8859-1)
led_controller IP test begin.

LED
LED
LED
LED
LED
LED
LED
LED
LED

value:
value:
value:
value:
value:
value:
value:
value:
value:

00 =l Of W1 fs b R =@

Figure 4.21: Terminal tab displaying LED values

You should also see the LEDs on the development board displaying the corresponding LED

values.

This concludes this exercise on designing Zynq IP in HDL. You should now be familiar with:

IP Creation

« Creating AXl interface templates with the Create and Package IP Wizard.

« Adding functionality to HDL IP peripherals in Vivado and IP Packager.

« How to connect packaged IP to a Zynq Processing System in IP Integrator.

« Creating software applications to control the HDL IP using the generated C software

drivers, and executing them on a Zynq development board

www.zyngbook.com

117

Exercise 4B: Creating IP in MathWorks HDL Coder

In this exercise, we will be creating an IP core which will perform the function of an LMS noise

cancellation filter. MathWorks HDL Coder will be used to transform an existing Simulink block-

based model into an RTL description which will be packaged for use in the Vivado IP Catalog. We

will start by opening the Simulink model in MATLAB.

Before starting this exercise, you should copy some source files into a new working directory.

(@) In Windows Explorer, navigate to C:\Zynq_Book\sources\hdl_coder_Ims and copy the

contents of the directory to a new directory called C:\Zynq_Book\hdl_coder_Ims.

(b) Launch MATLAB by navigating to Start > All Programs > MATLAB > R2015a > MATLAB

R2015a

MATLAB will open and you will see the main workspace, as shown in Figure 4.22 (or a

variation thereof).

(d\ MATLAB R2015a - academic

B L Newvarate
" [} Open Variable ~

=z '{Iv:' i | (5] Fina Fies &

{7 Run and Time
Import Save

New MNew Open [i-] Compare
Script v e
FILE VARIABLE CODE

Analyze Code oE
L Analy. a5

Simuiin}
Data Workspace |') ClearWorkspace = [ClearCommands = Lbrary =
SIMULING

e B S B seorch Documen tation
E {8} Preferences @ (% Community
(5] Set Path = Request Support
Kk Layout Hely
il Paratel ~ v 5 AddOns v

ENVIRCNMENT RESCURCES

> ETEC
Current Folder
Mame MNew to MATLAB? See resources for Getting Started.

B v |

Details ~

Workspace

Name Value

ew MATLAB graphics system, with new default colors, fonts, and styles, and

A New MATLAB Graphics System
MATLAB R2014b introduces a n ith n
many new features. Some existing code may need to be revised to work in this version of MATLAB.
L Learn more

Figure 4.22: MATLAB workspace environment

Note: This workbook uses version R2015a of MATLAB. If you have a different MATLAB version
you may need to replace your own version (i.e. R2014a/R2014b/R2013a/R2013b) with 2015a.

118

www.zyngbook.com

IP Creation

Exercise 4B: Creating IP in MathWorks HDL Coder

(c) Ifyour MATLAB HDL Toolpath has already been set-up, move on to Step (d), otherwise carry-

out the following procedure.

Download and install Xilinx ISE 14.7 from the Xilinx website or from the following link:

http://www.xilinx.com/products/design-tools/ise-design-suite.html

Using Windows Explorer locate the Xilinx ISE Application within the Xilinx ISE 14.7
installation directory named ise.exe. Typically, the application can be found at the
following address if installed to the C Drive:

C:\Xilinx\14.7\ISE_DS\ISE\bin\nt\ise.exe

Copy the address to the clipboard and open the MATLAB workspace shown previously in

Figure 4.22.

In the Command Window enter the following function:
hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath’,
"C:\Xilinx\14.7\ISE_DS\ISE\bin\nt\ise.exe")

Where the fourth parameter (application address) is the installation directory previously

copied to the clipboard.

Successfully setting up the HDL Toolpath will result in the following information being

displayed:

¥» hdlsetuptoolpath('ToolName', 'Xilinx ISE', 'ToolPath', "C:\Xilinx\14.7\ISE DS\ISE\bin\nt\ise.exe')
Setting XTILINX environment wvariable to:

C:%\¥ilinx%14.7\ISE DS\ISE

Setting XILINX EDE environment wariable to:

C:%\¥ilinxA14.7\ISE DS\EDK

Setting XILINX PLANARHEAD environment wvariable to:

C:%¥ilinxh14.7\ISE D5\PFlanRkhead

HDL Coder can now be used to synthesise HDL code for Xilinx Hardware Platforms.

(d) Enter C:\Zynq_Book\hdl_coder_Ims as the working directory, as highlighted in Figure 4.23.

IP Creation

HOKE

Len EII:::I 1 [Find Fies & mE

New HMNew Open |1=| Compare Import Save
Script - - Data Workspa

FILE

Sl e S MM C\ 7yng Book\hdl_coder_Ims

Figure 4.23: Setting the MATLAB working directory

www.zyngbook.com 119

Exercise 4B: Creating IP in MathWorks HDL Coder

In the Current Folder pane, you should also see four files:

original_speech.wav — A short audio clip of speech.

+ setup.m — Performs setup commands to import the audio samples into the MatLab
workspace and set the system sample rate accordingly.

+ Ims.slx — A simulink model which implements and LMS noise cancellation process.

« playback.m —Can be used to verify the LMS filtering process via audio playback of the

various stages.

The setup commands in setup.m are automatically called when the Simulink simulation is

initialised.

(e) Open the LMS Simulink model by double-clicking on Ims.sIx in Current Folder pane.

The model should open and you should see the LMS system, as shown in Figure 4.24.

e 0 m=E

File Edit View Display Diagram Simulation Analysis Code Tools Help
e - @ BEG-E-@ @B o [e » @~ &~
Ims
® |[Pams » -
&
EZ
-
=
— =]

To'Workspace1
= >
=¥

lJ—LIDSF'

0 o I B L

s Data Type Conversion1 <) >

ine Wave +

[oser }— 1 PorComs s

Data Type Con ion2
@& From Workspace Add i Typs Fomeien ™S Scopel
: - {mee]
To Workspace

Ready 100%: FixedStepDiscrete

Figure 4.24: LMS model in Simulink

The model features two sources:

« aSine Wave block which generates tonal noise.

« A From Workspace block which imports the audio samples from the MATLAB

Workspace.

The tonal noise is then added to the audio samples to create a corrupted audio signal.

120 www.zyngbook.com IP Creation

Exercise 4B: Creating IP in MathWorks HDL Coder

In order to generate HDL code for the Simulink LMS model using HDL Coder, the inputs to the
system must be in fixed-point numerical format. Two Data Type Conversion blocks are used to
convert the corrupt audio signal and the tonal noise signal to fixed-point format. The fixed-point
signals are then input to an LMS subsystem, which we will explore in the next step.

At the output of the LMS subsystem, the error signal, e(k), is input to a scope along with the
corrupt audio and tonal noise inputs, for visual inspection of the signals. Two To Workspace
blocks are also present to allow the LMS output and the corrupt audio signals to be output to the

MatLab workspace for audio playback.

(f) Drill down into the LMS subsystem block by double-clicking on it. You will see the system in
Figure 4.25.

Input Outputf——p -

x(k) LMS Terminator

Desired En'or

d(k) e(k)
LMS Filter

Figure 4.25: LMS subsystem

It features a single LMS Filter block. As we are not interested in the Output signal, it is
unconnected. Further reading about the functionality of an LMS Filter can be found by right

clicking the LMS Filter block and selecting Help as shown below:

Subsystem & Model Reference 3

%K) Format 4
d Rotate & Flip 3

Arrange 3
—wdik)

Mask 3

LMS Library Link

Signals & Ports 3

Requirements Traceability

Linear Analysis 3

Model Advisor 4

Fixed-Point Tool...

C/C++ Code 3

HDL Code 4

Block Parameters (Subsystemn)
Properties...

I Help I

IP Creation www.zyngbook.com 121

Exercise 4B: Creating IP in MathWorks HDL Coder

(g) Open the LMS Filter Block Parameters by double-clicking on the LMS Filter block.
Take a moment to explore the parameters. You should be able to determine that there are 16

adaptive filter coefficients and a step size of 0.125.

(h) Close the Parameters window, and return to the main Simulink model by clicking the Up To

Parent button, | 1}
We will be generating HDL code for the LMS subsystem only.

Right-click on the LMS subsystem and select HDL Code > HDL Workflow Advisor.
The HDL Workflow Advisor window will open, as in Figure 4.26.

[T HDL Workflow Ady F=rE)

File Edit Run Settings Help

Find: * Qa5

HDL Workflow Advisor

4 [HDL Workflow Advisor

=
“f 1. Set Target) HOL Workflow Advisor fadilitates RTL code (VHDLVerilog) and testbench

+ I 2, Prepare Model For HDL Code Generation generation from a subsystem, performs synthesis tasks by invoking a

- [3. HDL Code Generation supported third party synthesis tool, and annotates critical path

information back to the system. It also allows you to set a particular

workflow and guides you through the tasks necessary for full deployment.

Each task performs one distinct step of the workflow. The HDL Workflow

Advisor provides you with a feedback on the results of each task. If the

task fails, it provides you with information on how to modify the model to

complete the task.

When you complete the tasks, you have a synthesis result report from one
of the supported synthesis tools. If the result does not meet your
requirement, you may choose to modify the original model, use different
implementations, or use different code generation options to refine and
explore the result.

Legend

Mot Run

Passed

Failed

Warning

Group Folder - run in any order

Procedure Folder - run sequentially

Running this check triggers an Update Diagram.
-=>> "Run to Failure™ in progress.
Report

Report: ... \report 184, html
Date/Time: Mot Applicable
Summary: 0 Pass: 0 0 Fail: 0 /% Warning: 0 [=] NotRun: 9

Help

Figure 4.26: HDL Workflow Advisor window

The HDL Workflow Advisor guides you through the steps required to generate RTL code for your
design.

122 www.zyngbook.com IP Creation

Exercise 4B: Creating IP in MathWorks HDL Coder

(i) In the left-hand panel, expand Set Target and select 1.1. Set Target Device and Synthesis
Tool.
Here we specify the output format of the RTL and the target platform.

() Inthe Input Parameters pane, select IP Core Generation as the Target workflow, and Generic

Xilinx Platform as the Target platform

m At this stage, additional part specification options will now be available. Target the
Zedboard by first confirming the required part by inspecting the Zynq chip on the board.
Enter the part details into HDL Coder as in Figure 4.27.
1.1. Set Target Device and Synthesis Tool

Analysis (~Triggers Update Diagram)
Set Target Device and Synthesis Tool for HOL code generation

Input Parameters

Target workflow: [IF‘ Core Generation -]
Target platform: [Generir_ Xilimx Platform - Launch Board Manager
Synthesis tool: [xilinx ISE v] [Refresh]
Family: [Eynq v] Device: [xc?zﬂzﬂ T]
Package: [dg*’lﬂf’r v] Speed; [—1 v]

Project folder: hdl_prj

Set Target Library (for floating-point synthesis support)

Run This Task

Figure 4.27: ZedBoard HDL Workflow Advisor Input Parameters

At this stage, additional part specification options will now be available. Target the Zybo by
first confirming the required part by inspecting the Zynq chip on the board. Enter the part
details into HDL Coder as in Figure 4.28.

IP Creation www.zyngbook.com 123

Exercise 4B: Creating IP in MathWorks HDL Coder

1.1. 5et Target Device and Synthesis Tool
Analysis (~Triggers Update Diagram)
Set Target Device and Synthesis Tool for HDL code generation

Input Parameters

Target workfow: IIP Core Generation -]
Target platform: [Generic Xilinx Platform - Launch Board Manager
Synthesis tool: [Xilinx ISE v] [Refresh]
Family: [Eynq v] Device: [xc?zﬂlﬂ v]
Package: [dg400 v] Speed: l—l v]

Project folder: hdl_prj

Set Target Library (for floating-point synthesis support)

Run This Task

Figure 4.28: Zybo HDL Workflow Advisor Input Parameters

M (k) Click Run This Task to apply the settings.

(I) Select Set Target Interface from the left hand panel.
Here we specify the target interface for the HDL code generation.
In the Input Parameters pane, select Coprocessing - blocking as the Processor/FPGA
synchronization. This will automatically infer an AXI4-Lite interface for all ports in the design,
and specify a memory address for each as shown in Figure 4.29.
1.2. Set Target Interface
analysis (~Triggers Update Diagram)

Set target interface for HOL code generation
Input Parameters

Processor/FPGA synchronization: IlCnpmcessing - blocking -]I

Target platform interface table

Port Mame Port Type Data Type Target Platform Interfaces Bit Range / Address / FPGA Fin
(k) Inport sfix16_E.. |AXI4dite v | x~100”
d(K) Inport sfix16_E.. |AXI-ite > | x"104"
(k) Outport sfix16_E... |AXI4ite > | x~108”

Figure 4.29: HDL Workflow Advisor Set Target Interface

(m) Click Run This Task to apply the settings.

124 www.zyngbook.com IP Creation

Exercise 4B: Creating IP in MathWorks HDL Coder

(n) Expand Prepare Model for HDL Code Generation in the left hand panel, and select Check
Global Settings.

Here, model-level settings will be checked to verify if the model is ready for HDL code generation.

(0) Click Run This Task to check the model-level settings.

If this step fails, click Modify All to allow HDL Workflow Advisor to modify the settings.

This step should now pass, and you will be presented with a table of the results.
The next few steps are all checks, and can be performed in batch.

(p) Right-click on Check Sample Times in the left hand pane, and select Run to Selected Task as
shown in Figure 4.30.

4 I HOL Workflow Advisor

4 _a 1, Set Target
ﬁ #1,1. 5et Target Device and Synthesis Tool
0 1.2, Set Target Interface

4 I 2, Prepare Model For HOL Code Generation
0 2.1, Check Global Settings
| ~2.2, Check Algebraic Loops
| ~2.3. Chedk Block Compatibility
| ~2.4, Chedk Sample Times

- I 3. HOL Code Generation Run This Task
I Run to Selected Task I

Reset This Task

What's This?
Figure 4.30: HDL Workflow Advisor Run to Selected Task

(9) Thiswill perform the checks one after another to prevent you from running each individually.

All checks should pass.

The final steps involve specifying basic settings about the RTL code, such as what language to use
(VHDL/Verilog), and what code generation reports to generate. Finally the HDL code will be

generated.

() Expand HDL Code Generation in the left hand pane, and further expand Set Code Generation
Options.

Click on Set Basic Options.

IP Creation www.zyngbook.com 125

Exercise 4B: Creating IP in MathWorks HDL Coder

126

(s)

(t)

Select VHDL as the Language in the Target pane.

You can also select any of the Code generation reports that you would like.

Select Set Advanced Options in the left hand panel.

Here you can specify more advanced options for the HDL code.

We will be leaving the values as default, but you may wish to explore the settings for future
use.

Right-click on Set Advanced Options, and select Run to Selected Task to apply the settings.

Finally, select Generate RTL Code and IP Core from the left hand panel.
This is the step which will finally generate the HDL code for the LMS IP Core.

Set the IP core name as Ims_pcore and click Run This Task.

Once HDL Coder has finished generating the HDL code, the Code Generation Report window will

open. This provides a summary of the HDL Coder results and provides further information on the

target interface and clocking.

The final stage of creating our LMS IP core is to package it with IP Packager so that we can use it

in IP Integrator designs. To do this we will need to create a new Vivado project.

(w) Launch Vivado and create a new project called Ims_packaging at the following location:

C:\Zynq_Book\hdl_coder_Ims, ensuring that the option to create a project subdirectory is
selected. Set RTL Project as the Project Type, select VHDL as the target language, and enter the

default part corresponding to your Zynq development board.

For more detail on the process of creating a new Vivado project, refer to Step (a) of Exercise

4A.

When the project has been created and opened, select Tools > Create and Package IP from

the menu bar, and Click Next.
Select the option to Package a specified directory, and click Next.

Enter C:/Zynq_Book/hdl_coder_Ims/hdl_prj/ipcore/Ims_pcore_v1_00_a as the [P

Location.

(aa) Click Next to move to the Edit in IP Packager Project Name dialogue, and click Next to accept

the default Project Name and Project Location.

(ab)At the Summary window, and click Finish to launch IP Packager.

www.zyngbook.com IP Creation

Exercise 4B: Creating IP in MathWorks HDL Coder

(ac) In the left hand panel of the IP Packager window, select Ports and Interfaces.
The IP Interfaces panel will open, and you should see that IP Packager has identified the

individual AXI ports, but has not inferred an AXl interface.

To infer an AXl interface:
(ad)Right-click on a blank section of the IP Ports and Interfaces pane, and select Auto Infer
Interface...

(ae) The Auto Infer Interface Chooser window will open:

Choose zero or more interfaces to infer from your I, If you do not select any interfaces it will try to
automatically infer based on your IP's port names.

Interface Definition Interface Logical Ports

<] ARADDR
<] ARBURST
<] ARCACHE

JamBA AXI Interface 7 ARID

AMBA AXI4-Stream Interf T ARLEN

«] ARLOCK
<7 ARPROT
< ARQOS
O+ ARREADY
] ARREGION
+J ARSIZE
<] ARUSER
<] ARVALID

‘-'\ MName Description

Select aximm from the list, as shown, and click OK.
The individual AXI ports in our design will be mapped to an AXILite interface.
(af) Select Addressing and Memory from the left hand panel. Here, IP Packager has incorrectly
specified an address Range of 65536. Click on the Range, and change the value to 32.
(ag)Finally, select Review and Package from the left hand menu.

Review the information provided, and click Package IP.

This completes the generation of an LMS component from Mathworks HDL Coder. You should

now be familiar with:

« Using the Simulink block-based design environment for the design and simulation of IP.

« Using the HDL Workflow Advisor to guide you through the steps of generating RTL code
and IP cores for existing Simulink designs.

« Packaging HDL Coder generated IP blocks in IP Packager for use in Vivado IP Integrator

designs.

IP Creation www.zyngbook.com 127

Exercise 4C: Creating IP in Vivado HLS

In this final exercise, we will creating an IP core that will implement the functionality of an NCO.
The tool that we will be using is Vivado HLS, and we shall explore some of the features which
allow us to specify arbitrary precision fixed-point data types, as well as the directives required to

export IP with an AXI-Lite slave interface, to allow the IP core to interface with the Zynq processor.

We will start by creating a new project in Vivado HLS.

]

(@) Launch Vivado HLS by double-clicking on the Vivado HLS desktop icon: wsss , or by
navigating to Start > All Programs > Xilinx Design Tools > Vivado 2015.1 > Vivado HLS >
Vivado HLS 2015.1

(b) When Vivado HLS loads, you will be presented with the Getting Started screen, as in Figure
4.31.

VIVADO/ XILINX

HLS ALL PROGRAMMABLE.

Quick Start
— =\
/! 3 I"u / Al
\ - \ \ 'g ,
Create Mew Project Open Project Open Example Project
Documentation
Tutorials User Guide Release Motes Guide

Figure 4.31: Vivado HLS Getting Started screen

(c) Select the option to Create New Project and the New Vivado HLS Project Wizard will open, as

in Figure 4.32.

128 www.zyngbook.com IP Creation

Exercise 4C: Creating IP in Vivado HLS

Project Configuration

Create Vivado HLS project of selected type

Project name: | hls_nco

Location: CM\Zyng_Book

Figure 4.32: Vivado HLS New Project Wizard

Enter hls_nco as the Project name, and C:\Zynq_Book as Location.
Ensure that the options match those in Figure 4.32, and click Next.
(d) The Add/Remove Files dialogue will appear. This is where existing C-based source files can be
added to the project, or new files created.
Enter nco as the Top Function and click Add Files...
Navigate to C:\Zynq_Book\sources\hls_nco and select nco.cpp. Click Open.

The dialogue should now resemble Figure 4.33.

Add/Remove Files E‘,}' =
Add/remove C-based source files (design specification)

Tep Function: nce

Design Files

MName Add Files...

Edit CFLAGS...

Remowve

Finish Cancel

Figure 4.33: Vivado HLS New Project Wizard (Add/Remove Files)

Click Next.

IP Creation www.zyngbook.com 129

Exercise 4C: Creating IP in Vivado HLS

(e) A second Add/Remove Files dialogue will appear. This is where C-based testbench files can be

130

added to the project, or new files created.

Click Add Files... and navigate to C:\Zynq_Book\sources\hls_nco. Select nco_tb.cpp and
click Open to add the testbench file to the project.

Click Next.

The Solution Configuration dialogue will open. Here we will be selecting the part which we
will be targeting.

Ensure the Period is set to 10.

Click the selection button, E in the Part Selection pane.

The Device Selection Dialog will open.

As we are targeting the ZedBoard, select Boards in the Specify pane and choose ZedBoard

Zynq Evaluation and Development Kit, as in Figure 4.34.

¢ Device Selection Dialog |E| | 22 |
Select: ’ @ Parts] [ﬁ Boards]
RTL Tool Filter
Auto - Vendor: em.avnet.com -
Display Name: | ZedBeard Zyng Evaluation and Development Kit -
Reset All Filters
Search: +
Display Mame Part Family Vendor
@ZedBoard Zyng Evaluation and Development Kit xc7z020clgd84-1 zyng em.avnet.com
<« [i o v
[oK] ’ Cancel

Figure 4.34: Zedboard Device Selection Dialog

Click OK to close the dialogue and return to the New Project Wizard.

As we are targeting the Zybo, select Parts in the Specify pane and then filter the board parts

using the filter drop down menus, as shown in Figure 4.35.

www.zyngbook.com IP Creation

Exercise 4C: Creating IP in Vivado HLS

¢ Device Selection Dialog | = | | 23 |
Select: [@ Part:] ’ ﬁ Boards]
RTL Tool Filter
Aute - Product Category: | All = | Package: clg400 -
Family: zyng - | Speed grade: | - -
Sub-Family: zyng = | Temp grade: | € -
Reset All Filters
Search: +
Part Family ~ Package Speed SLICE LuT DSP BRAM
xc7z020clg400-1 zyNng clgd00 -1 13300 53200 106400 220 280
@xc?ﬁllﬂclgelﬂﬂ-l zyng clgd00 -1 4400 17600 0 120
[] [Cancel

Figure 4.35: Zybo Part selection dialogue

The required part can be confirmed by inspecting the Zynq chip on the Zybo development

board. The Z7010 Zynq chip with a clg400 package should be selected. Click OK

m (g) Click Finish to close the New Project Wizard and to create the project.

The Vivado HLS workspace will open.

(h) In the Explorer panel, expand the Source and Test Bench
headings. You should see the source files that we specified

in the New Project Wizard, as in Figure 4.36.

(i) Open nco.cpp and examine the contents of the file.

You should notice the inclusion of the header file
ap_fixed.h on the first line. This is the arbitrary precision
fixed-point library which adds support for the use of fixed-

point data types in C++.

IP Creation www.zyngbook.com

[Explorer &7 e = 8

4 == hls_nco
+ [Includes
4 -E Source
@ nco.cpp
4 [z Test Bench
[€ nco_tb.cpp

] E SOIUTonT

4 @8 constraints
9L directives.tel

9L script.tel

Figure 4.36: Vivado HLS Explorer
panel

131

Exercise 4C: Creating IP in Vivado HLS

132

The next thing that you should see is the global declaration of a 2 12— 4096 value array:

const ap fixed<16,2> sine lut[4096] ...

This forms the sinewave lookup table. It is defined as an array of type ap_fixed<16,2>,
which means that all values are16-bit, signed fixed-point (2 integer bits and 14 fractional
bits).

Further information on fixed-point data types in Vivado HLS can be found in Chapter15 -
Vivado HLS: A Closer Look of the Zynq Book.

The functionality of the NCO is contained in the function:

void nco (ap_fixed<16,2> *sine_sample, ap ufixed<16,12> step_size)

It takes two arguments:

« *sine_sample — A pointer to a 16-bit, signed fixed-point variable which forms the
output sample of the NCO.

. step_size — 16-bit, unsigned fixed-point value which provides the step size input for
the NCO.

Explore the nco function, ensuring that you understand it all.

Open nco_tb.cpp. This is the testbench file which is used to ensure that the functionality of

the C-based source file is correct.
Explore the code in the file, ensuring that you understand the functionality.

Thisis a simple file which opens a text file in write-mode, to allow you to output the sinusoidal
samples. It then calls the nco function from within a for-loop in order to generate a finite
number of sinusoidal samples, which are then output to the text file.

The text file is formatted in a way which easily allows you to import the samples into MATLAB
for analysis.

Note: The location of the output file is determined by the following line in the testbench file:

char *outfile = "C:\\Zyng_Book\\nco_sine.m";

You should change the output file path accordingly to a location on your local machine.

www.zyngbook.com IP Creation

Exercise 4C: Creating IP in Vivado HLS

We will now run a C simulation.

(k) Click the Run C Simulation button, = , from the Main Toolbar.
The C Simulation Dialog window will open. Click OK to run the simulation with the default

settings.

The C simulation will run, and you should see the following output in the Console window:

El Console i3 <] Errors| & Warnings

Vivado HLS Console
File open for writing.

Sample output to file complete.

@I [SIM-1] C5im done with @ errors.
@I [LIC-181] Checked in feature [HLS]

The sine wave samples that were generated by the NCO will have been output to the location
which you specified in the previous step.

If you wish, you can import the sine wave samples into MATLAB using the output file to verify that
the NCO has correctly generated a sine wave. This should be done at your own discretion, and will

not be covered in this exercise.

The process of HLS has been covered previously in The Zynq Book Tutorial: Designing With
Vivado High Level Synthesis, and you should refer to it for more detailed information on the
various steps involved. For the purposes of this exercise, it is presumed that you have a

reasonable knowledge of the Vivado HLS tool.

As we want to allow our NCO peripheral to be controlled by a Zynq PS, it is necessary to give it an
interface. This can be achieved using a variety of interfaces such as the AXl interface or a GPIO for
simple data transfers. The AXl interface will be used; this is carried out in Vivado HLS through the

use of directives.

IP Creation www.zyngbook.com 133

Exercise 4C: Creating IP in Vivado HLS

134

(I) Ensure that nco.cpp is the active source file, and select the Directive tab in the right-hand

side of the Vivado HLS workspace, as shown in Figure 4.37.

5= Qutline | (14 Directive 3 = O

#[1 sine_lut
) termp
4 @ nco
@ sine_sample
@ step_size
. (9 address

Figure 4.37: Vivado HLS Directive tab

First, we will define the interface of the NCO as an AXI-Lite slave.

(m) Right-click on nco in the Directive tab, and select Insert Directive.
As the Directive Type, select INTERFACE.
Leave Destination as Directive File.
Select s_axilite from the mode drop-down menu.

Click OK.

We will now define the NCO as having a ap_ctrl_none interface, to remove unneeded control

signals.

(n) Right-click on nco in the Directive tab, and select Insert Directive.
As the Directive Type, select INTERFACE.
Leave Destination as Directive File.
Select ap_ctrl_none from the mode drop-down menu.

Click OK.

Finally, we will be defining the two variables, sine_sample and step_size, as ports on the AXI-

Lite slave interface.

(o) Right-click on sine_sample in the Directive tab, and select Insert Directive.
As the Directive Type, select INTERFACE.
Leave Destination as Directive File.
Select s_axilite from the mode drop-down menu.

Click OK.

www.zyngbook.com IP Creation

Exercise 4C: Creating IP in Vivado HLS

(p) Repeat the previous step for the step_size variable in the Directive tab.

On completion, the Directive tab should look like Figure 4.38.

0= Outline | (4 Directive 2 €« = d

2[1 sine_lut
PRIC) temp
@ Base
4 @ nco
0% HLSIMTERFACE s_axilite port=return
0% HLSIMTERFACE ap_ctrl_none port=return
@ sine_sample
0% HLS INTERFACE s_axilite port=sine_sample
@ step_size
0% HLS INTERFACE s_auilite port=step_size
a (9 address
@ Base

Figure 4.38: Complete Directive tab

We can now run HLS.

(@) Run CSynthesis by clicking the Run C Synthesis button, B, from the Main Toolbar.
(r) Click the Export RTL button, £, from the Main Toolbar.

The Export RTL Dialog window will open, as shown in Figure 4.39.

+*] Export RTL Dialog |
Export RTL &
|
Format Selection
[IP Catalog v‘ [Configuration...
Options

D Evaluate Verilog -

[C] Do not show this dialog box again.

[ok || cance |

Figure 4.39: Vivado HLS Export RTL Dialog Window

(s) Select IP Catalog as the Format Selection.
If you choose, you can edit the IP Identification data by clicking the Configuration button.
Additionally, the IP core can be generated using Verilog or VHDL. Vivado is capable of

synthesising mixed hardware languages. We will keep the default option using Verilog.

IP Creation www.zyngbook.com 135

Exercise 4C: Creating IP in Vivado HLS

136

(t) Click OK to generate the IP core.

When RTL Generation has completed, a directory named impl
will be visible in the Explorer panel

This directory contains the ip subdirectory which contains the
generated IP package.

Take a moment to explore the contents of the ip directory.

With the IP generated, the next step would be to include itin an
IP Integrator design (which will be covered in the next tutorial).
For future reference, however, it is worth briefly describing how
this would be done.

In order toinclude HLS generated IP in IP Integrator, it must first
be added to the Vivado IP Catalog. To do this you must add the
output from HLS to an IP repository. This can be achieved by

(" Explorer &3 t;r;.':h = B

4 == hls_nce
+ [apt) Includes
4 = Source

|8} nco.cpp
4 flm Test Bench

[} nco_th.cpp
4 = solution?
4 % constraints
“i‘k directives.tcl
i script.tel
. [csim
4 [impl
T
. = verilog
- = vhdl
. = syn

either adding the HLS generated output directory to an existing IUP repository directory, or by

creating a new repository. In either case, the directory is the same. In this case:

C:\Zynq_Book\hls_nco\solution1\impl\ip

We have now completed the generation of the NCO component as an IP Integrator compatible

AXI-Lite block. You should now be familiar with:

« Specifying directives in Vivado HLS designs which define the control interface of the

exported RTL.

« The process of specifying an AXI4 interface for a design, to enable a Vivado HLS system

to be easily connected to the Zynq PS.

« Exporting a Vivado HLS design as an IP core that is compatible with the Vivado IP Catalog

and IP Integrator.

www.zyngbook.com

IP Creation

The Zynq Book Tutorials 5

Adventures with IP Integrator

vl.4, June 2015

137

Revision History

Date Version Changes
22/10/2013 1.0 First release for Vivado Design Suite version 2013.3
28/01/2014 1.1 Updated for changes in Vivado Design Suite version 2013.4
06/05/2014 1.2 Updated for changes in Vivado Design Suite version 2014.1
10/09/2014 1.21 Minor corrections.
10/04/2015 1.3 Updated for changes in Vivado Design Suite version 2014.4
05/05/2015 131 ggg%tr?dsﬁtiensgjr(i?oﬁéboa Zi/elopment board for Vivado
19/06/2015 14 Updated for changes in Vivado Design Suite version 2015.1

138

www.zyngbook.com Adventures with IP Integrator

Introduction

In this tutorial you will bring together all of the custom IP modules that you created in the previous set of
practical exercises, along with other IP from the Vivado IP Catalog, to create a DSP system for
implementation on a Zynq development board (note that all IP required by this design is also provided
separately). IP for the control of the audio codec on the Zynq development board will be introduced and all
modifications to the IP Integrator design will be carried out. A software application will be developed in the

SDK which will configure all of the IP modules and control the interactions between them and the PS.
The tutorial is split into three exercises as follows:

Exercise 5A - This exercise focuses on importing all of the custom IP modules into the Vivado IP Catalog
for inclusion in an IP Integrator DSP design. The individual IP blocks will be explored, along with their

customisable parameters.

Exercise 5B - The Analog Devices ADAU1761 audio codec on the ZedBoard and SSM2603 audio codec on
the Zybo will be introduced in this exercise, with the inclusion of some pre-packaged IP. Both IPs implement
a I°S serial communication for sending and receiving audio samples to/from the audio codec. The audio
samples are transferred between the PL and the PS via a standard AXI-Lite connection. In order to use the
audio codec, a variety of modifications must be made to the Zynq PS, such as the inclusion of second fabric
clock to drive the codec, and the enabling of a I°C interface for the communication of control signals
between the PS and the codec.

In order to map the external interfaces in the design to physical pins on the Zynq device, a Xilinx Design
Constraints (XDC) file must be created and included in the design. This informs the synthesis and
implementation processes in Vivado where to route the external interface signals. The format of the XDC

file will be explored before generating the hardware for the finalised design.

Exercise 5C - In this final exercise, the finalised design from Exercise 5B will be exported to the SDK for
software development. Here, the application which will control the interactions between the various custom
IP modules, the PS and the audio codec will be created. The various software driver files will also be explored

before building and running the application on the Zynq development board for testing.

NOTE: Exercise 5C requires you to be able to send keyboard commands to the Zynq PS via the UART
terminal. To do this, it is necessary to use third-party terminal program. In this tutorial, we shall be using

PuTTY which can be downloaded for free from the following link:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

To download the standalone executable, select the putty.exe download from the Binaries section.

Adventures with IP Integrator www.zyngbook.com 139

Exercise 5A: Importing IP to the Vivado IP Catalog

140

In this exercise we will be concentrating on importing existing custom IP into the Vivado IP
Catalog. We will be importing the various IP blocks that we created in The Zynq Book Tutorial

IP Creation.
We will start by creating a new Vivado Project.

(@) Launch Vivado 2015.1 and create a new RTL project called adventures_with_ip in the
C:\Zynq_Book directory, ensuring that the option to Create project subdirectory is selected.
Select VHDL as the Target language and the appropriate part for your Zynq development
board.

(b) From Flow Navigator, select IP Catalog from the Project Manager section.

The IP Catalog will open in the Workspace, as seen in Figure 5.1. Note the position of the IP
Settings button which we will need shortly.

¥, Project Summary ¢ |1k IP Catalog X

'}D Search:
== -1
e2a | Name
I@‘J #-[= Aliance Partners
+-[= Automotive & Industrial
& + AXI Infrastructure
2| 6 BaselP
+ Basic Elements
+ [Communication & Metworking
+ [Debug & Verification
+ Digital Signal Processing
+ Embedded Processing
IP Settings + FPGA Features and Design
\ % - Math Functions
+- = Memories & Storage Elements
E +-[= Standard Bus Interfaces
+-[= Video & Image Processing

Figure 5.1: Vivado IP Catalog

In order to import our custom IP into the IP Catalog, we must add a new software repository to
the IP Catalog. We will create a new directory to act as our IP repository and all of our IP sources

toit.

www.zyngbook.com Adventures with IP Integrator

Exercise 5A: Importing IP to the Vivado IP Catalog

(c) In Windows Explorer, navigate to the location: C:\Zynq_Book\ip_repo. This is the IP

repository that we created in Tutorial 4.

We must now add each of the IP sources that we created in The Zynq Book Tutorial IP Creation

to our repository.

As the LED controller IP is already present in the IP repository, we do not need to import it.

(d) Open a second Windows Explorer and navigate to
C:\Zynq_Book\hdl_coder_Ims\hdl_prj\ipcore\Ims_pcore_v1_00_a. Copy the archived IP
ZIP file, ac.uk_user_Ims_pcore_1.0.zip to the ip_repo directory.

(e) In the second Windows Explorer, navigate to C:\Zynq_Book\hls_nco\solutionT\impl\ip

and copy the archived IP ZIP file, xilinx_com_hls_nco_1_0.zip to the ip_repo directory.
That completes the copying of our custom made IP sources to our newly created IP repository.

(f) We will now add one more IP source to our repository — an existing IP block which controls

the audio codec on the Zynq development board.

In Windows Explorer, navigate to
C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\ip and copy the

archived IP ZIP file, zed_audio_ctrl.zip to the ip_repo directory that we located in Step (c).

If you have not completed the previous tutorial, a master set of the IP sources is contained in
C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\ip which you can

copy into the repository for use in this tutorial.

In Windows Explorer, navigate to
C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\ip and copy the archived
IP ZIP file, xilinx_com_zybo_audio_ctrl_1.0.zip to the ip_repo directory that we located in

Step ().

If you have not completed the previous tutorial, a master set of the IP sources is contained in

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\ip which you can copy into

Adventures with IP Integrator www.zyngbook.com 141

Exercise 5A: Importing IP to the Vivado IP Catalog
the repository for use in this tutorial.

m Now that we have created the IP repository and added all of our existing IP sources, we can now
add the repository to the IP Catalog.

(g) Inthe Vivado IP Catalog tab, click the IP Settings button, 3, as highlighted in Figure 5.1.

The IP Settings window will open, as shown in Figure 5.2.

g'”_ Project Settings | m | | 23 |
. P
@ Repository Manager | Packager | IP Cache
General (i) Add directories to the list of repesitories. You may then add additional IP to a selected
G repository, If an IP is disabled then a tool-tip will alert you to the reason.
I
IP Repaositories
Simulation +
,})o_\ -
&
Elaboration

\4

Er H button to Add R enasitory
Fress e + bution o Add Repository

Synthesis

entation

3

Imple

1040
Lelle

Bitstream Refresh Al

I +

EY

1P in Selected Repository

[oK] [Cancel

Figure 5.2: IP Settings Window

(h) Click the == symbolin the IP Repositories panel, and browse to
C:\Zynq_Book\ip_repo.
Click Select to add the repository to the IP Catalog.

You should see that the LED Controller IP is already present in the IP in Selected Repository

pane as it is in un-archived format.

142 www.zyngbook.com Adventures with IP Integrator

Exercise 5A: Importing IP to the Vivado IP Catalog

(i) We mustnow add the other IP sources to the repository by un-archiving them. In the Selected

Repository panel, shown in Figure 5.2, click the =}= symbol to add IP.

m The Select IP TO Add To Repository window will open as in Figure 5.3.

i

g Select IP To Add To Repository .m

Look in: . ip_repo ': ? Q :—:l iy 4\5_. \.j)(?& '

T . led_controller 1.0 Recent Directories

.;‘} :lj ac.uk_user_lms_pcore 1.0 = C:fZynq_Book{ip_repo
Recent Items ::‘“j xilink_cem_hls_nco_ 1 0
:lj zed_audio_ctrl
! Select a file to preview.
Desktop

File Preview

My Documents

A

Computer

(E File name: |

Files of type: | 1p Packages (.xml, zip)

Figure 5.3: Select IP to Add to Repository

Select ac.uk_user_Ims_pcore_1.0.zip and click OK. This will extract the archived IP sources

into a usable format in the repository.

Repeat this procedure for the remaining IP sources:

« xilinx_com_hls_nco_1_0.zip

o zed_audio_ctrl.zip

The resulting IP in Selected Repository panel should resemble that shown in Figure 5.4.

IP in Selected Repository

Ims_pcore_v1_0 (ac.uk:user:ims_pcore:1.0)
led_controller_w1.0 (ac.uk:user:led_controller: 1.0)
Mco (xilinx, com:hls:nco: 1.0)

zed_audio_ctrl (xilinx, com:user:zed_audio_ctrl; 1.0)

l Refresh Repository l

Figure 5.4: All IP sources added to IP Catalog

Click OK.

Adventures with IP Integrator www.zyngbook.com 143

Exercise 5A: Importing IP to the Vivado IP Catalog

The Select IP TO Add To Repository window will open as in Figure 5.5.

4 SelectIP To Add To _

Look in: . ip_repo ': ? Q = e 4\3—* \-7 x r:;! E2-

=
e
Recent Items

. led_controller 1.0

:;Q ac.uk_user_Ims_pcore 1.0
:;Q xilinx_com_hls_nco_1_0
:;Q xilink_com_zybo_audio_ctrl 1.0

Recent Directories
| C:/Zyng_Bookip_repo
File Preview

Select a file to preview.

Desktop

E:
I
My Documents

1Ay
.-

Computer

(E File name: |

Network Files of type: | 1p packages (.ml, zip)

Figure 5.5: Select IP to Add to Repository

Select ac.uk_user_Ims_pcore_1.0.zip and click OK. This will extract the archived IP sources

into a usable format in the repository.

Repeat this procedure for the remaining IP sources:

o Xxilinx_com_hls_nco_1_0.zip

« xilinx_com_zybo_audio_ctrl_1.0.zip

The resulting IP in Selected Repository panel should resemble that shown in Figure 5.6.

1P in Selected Repasitory

Ims_pcore_w1_0 (ac.uk:user:ims_pcore: 1.0)

led_controller_v1.0 (ac.uk:user:led_controller: 1.0)
= Mo (xilinx. com:hls:nco: 1.0)

zybo_audio_ctrl (xdlinx. com:xiliny: zybo_audio_ctrl: 1.0)

[Refresh Repository]

Figure 5.6: All IP sources added to IP Catalog

Click OK.

MWith all of our IP now imported into the IP Catalog, we can now create an IP Integrator block

design which incorporates all of the IP blocks.

() In Flow Navigator, select Create Block Design.

144 www.zyngbook.com Adventures with IP Integrator

Exercise 5A: Importing IP to the Vivado IP Catalog

(k) In the Create Block Design window, set the Design name as ip_design, and click OK.
(I) Inthe block design canvas, right-click and select Add IP.
In the Search box, enter led_controller and double-click led _controller v1_0 to add an

instance of the LED controller IP to the design.
(m) Repeat Step (I) searching for:

nco and double-clicking Nco

Ims and double-clicking Ims_pcore_v1_0

We have now added all of the custom IP that we created in the previous tutorial. At this point we

will avoid adding the audio controller IP, as it is the focus of the next exercise.
In order to connect and control all of the IP, we must now add an instance of a Zynq Processor.

(n) In the block design canvas, right-click and select Add IP.
In the Search box, enter zynq and double-click ZYNQZ7 Processing System.

At this stage, Designer Assistance should be available:

La. Designer Assistance available. Bun Blodk Automation Bun Connection Automation

Select the Run Block Automation option from the Designer Assistance message at the top of
the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,
to generate the external connections for both the DDR and FIXED_IO interfaces, and apply
the relevant board presets.

Your ZYNQ7 Processing System block should now resemble Figure 5.7.

processing_system7_0

-,

Adventures with IP Integrator

PTP_ETHERNET 0

DDR 4-

FIXED I0==

USBIND 0=F

M_AXI_GPO_ACLK ZYNQ‘
. TTCO_WAVED_OUT

TTCO_WAVEL OUT
TTCO_WAVE2 OUT
FCLK_CLKD
FCLK_RESETO M

M_AXI_GPO<F f:

I
| DDR

| "> FIXED_IO
I

i

ZYMNQ7 Processing System

Figure 5.7: Zedboard ZYNQ7 Processing System External Connections

www.zyngbook.com

145

Exercise 5A: Importing IP to the Vivado IP Catalog

As the Zedboard platform is the target development board, and this was specified on

creation of the project, Vivado will configure the Zynq processor block accordingly.

Select the Run Block Automation option from the Designer Assistance message at the top of
the Diagram window. Select OK, ensuring that the option to Apply Board Preset is selected,
to generate the external connections for both the DDR and FIXED_IO interfaces, and apply
the relevant board presets.

Your ZYNQ7 Processing System block should now resemble Figure 5.8.

processing_system?7_0

i "y

PTP_ETHERNET 0 |||

DDR - ||jm===="> DDR
FIXED_IO4} ||je "% FIXED_IO

soio_o4 |||
. USBIND_0<- |||
—M_AXI_GPO_ACLK M_AXI_GPOdk:
ZYNQ TTCO_WAVED_OUT k-
TTCO_WAVEL OUT =
TTCO_WAVE2_OUT =
FCLK_CLKO =
FCLK_RESETO N =

L, 4
ZYNQY Processing System

Figure 5.8: Zybo ZYNQ?7 Processing System External Connections

As the Zybo platform is the target development board, and this was specified on creation of

the project, Vivado will configure the Zynq processor block accordingly.

M Run Connection Automation for each of the three IP blocks, to connect them to the Zynq7

Processing System block, via an AXI Interconnect block.

146 www.zyngbook.com Adventures with IP Integrator

Exercise 5A: Importing IP to the Vivado IP Catalog

Select All Automation as in Figure 5.9 and click OK.

P
gl‘:-.'_:. Run Cannection Automaticn

===

Automatically make connections in your design by checking the boxes of the interfaces to connect, Select an interface on the left to
display its configuration options on the right.

=RFIAI Automation (3 out of 3 selected)

=[] £F led_controller_0

ik P
<
=
L._ﬁ"\
I
E

E}ﬂ Ims_pcore_0
[Il AXI4 Lite
=&k nco 0 Select an interface pin on the left panel to view its options

Figure 5.9: Run Connection Automation for three hardware blocks

You may recall that to allow the LED Controller block to control the LEDs on the board, the

LEDs_out port must be made external.

(o) Hover the mouse pointer over the LEDs_out interface on the led_controller block until the

cursor changes to a pencil. Right-click and select Make External. Alternatively, select the

interface and use the keyboard shortcut Ctrl+T.

Notice that the Ims_pcore_0 block has two unconnected input ports, as highlighted in Figure

5.10.
Ims_pcore_0

||| = A1_Lite
w [FCORE_CLK
={[PCORE _RESETH
—= AXT Lite ACLK
e AT Lite ARESETN

Ims_pcore_v1_0

Figure 5.10: LMS IP block

These are the CLK and reset ports of the IP, and must be connected in order for the IP to be

functional.

Adventures with IP Integrator www.zyngbook.com

Exercise 5A: Importing IP to the Vivado IP Catalog

(p) Hoverthe mouse pointer over the IPCORE_CLK interface on the Ims_pcore_0 block until the
cursor changes to a pencil. Click and drag the mouse pointer until it is hovering over the wire
that connects to the AXI_Lite_ ACLK interface and the wire is highlighted, as shown in Figure

5.11, and release the mouse button to create the connection.

Ims_pcore_0

IPCORE_CLK
: = [PCORE_RESETN
AXI_Lite_ACLK
AXT Lite ADESETH

.| Connect from 'IPCORE_CLK' port to
Im|'processing_system7 _0_fclk_clk0' nef

Figure 5.11: Manually connecting the LMS IP CLK

You should also see a pop-up message notifying you of the net which you are connecting to.

(g) Repeat the procedure of the previous step to, this time, connect the IPCORE_RESETN
interface to the wire which connects to the AXI_Lite_ ARESETN interface.

m Your current block diagram should now resemble Figure 5.12.

Ims_pcore_0

processing_system?7_0_axi_periph AXI4_Lite_ACLK
[AXI4_Lite ARESETN
pr— | 4R S00_AXI
"ACLK Ims_peore_v1_0
rst_processing_system7_0_100M } | | nco_0
slowest_sync_clk mhfreeetl: $——S00_ACLK Sl dbs ad AXILiteS | viado™ s
t_reset_in bus_struct._reset[0:0] 500_ARESETN (17 71 100 _AXT 4 fiimemte ap_clk
—alx_reset_in peripheral_reset[0:0] = MOOD_ACLK D%D MO1_AXI<R ~ p_rst_n '
={mb_debug_sys_rst interconnect_aresetn[0:0] MOD_ARESETN [228 [MD2_AXI o, b -
—dem_locked peripheral_aresetn[0:0] MOL_ACLK Nco (Pre-Production)
led_controller_0
MOL_ARESETN
Processor System Reset M02_ACLK £-500_AXT
MO02_ARESETN s00_axi_aclk LEDs_out{7:0] LEDs_out[7:0]
processing_system7_0 s00_axi_aresetn

AXI Interconnect

FTP_ETHERNET 0= led_controller_v1.0 (Pre-Production)

I
DOR<: |} {> DDR
FIXED_IO4- ||} {_ FIXED 10
usBIND_0 ||

- M_AXI_GPO o |
MAL G0 ALK 7NN Troo waveo_outh

TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKD
FCLK_RESETO_N p—

ZYNQ7 Processing System

Figure 5.12: Zedboard end of exercise block diagram

148 www.zyngbook.com Adventures with IP Integrator

Exercise 5A: Importing IP to the Vivado IP Catalog

Your current block diagram should now resemble Figure 5.13.

Ims_pcore_0
processing_system7_0_axi_periph
{4 S00_AXI AXI4 Lite ACLK
rst_processing_system7_0_100M ACLK AXI4_Lite ARESETM
ARESETN
lowest_sync_clk mb_reset | 500 ACLK Ims_pcore_v1_0
ext_reset_in bus_struct_reset[0:0] _»m_ﬂRESETN = B oo X =E—- nco_0
-—alix_reset in peripheral_reset[0:0] moinCLK = Dm17m+ - e AXILiteS [[acor i
=—mb_debug_sys rst interconnect_aresetn[0:0] “SO_ﬁRESETN 2 sz—m+ _ - ¥ ;k L
={dem_locked perheraI_aregetn[D:U} m{nCLK p : :p7r5t . ‘
Processor System Reset MO1_ARESETN Neo (PreProduction)
MO2_ACLK ’
MO2_ARESETN D DDR
processing_system7_0 led_controller_0
PTP_ETHERNET 0+ ||| AXI Interconnect 3 4-500_AXT
DR - || s00_axi_adk LEDs_out[3:0] -—DLEDs_outB:O]
FIXED_1045 ||} S00_axi_aresetn
spIo_0 - ||| = a
USBIND_ 0= I led_controller_v1.0 (Pre-Production)
M_AXI_GPO_ACLK ZYNQ‘ M_AXI_GP0k E;—- D FIXED_IO
: TTCO_WAVED OUT =
TTCO_WAVEL_OUT =
TTCO_WAVE2_ OUT =
FCLK_CLKO

FCLK_RESETO_N f=—ro-

Z-YN Q7 Processing System

Figure 5.13: Zybo end of exercise block diagram

MAt this stage we must now add and configure the audio controller IP, and so we will conclude this

first exercise on importing custom IP to the Vivado IP Catalog. You should now be familiar with:

« Adding an IP repository to the Vivado IP Catalog.
« Importing and adding archived IP files to a custom IP repository.

+ Adding custom IP to a Vivado IP Integrator block design.

Note: Do not close the current Vivado project as we will be using it again in the next exercise.

Adventures with IP Integrator www.zyngbook.com 149

Exercise 5B: Audio in Vivado IP Integrator

150

In this exercise we will be focusing on adding an audio controller IP instance to an existing Vivado
IP Integrator design, and the modifications which must be made to the Zynq Processor block in
order to use the audio codec on the Zynq development board. Such modifications include the
addition of a second PL fabric clock and the enabling of the I°C interface for the communication

of control signals between the Zynq PS and the codec.

(@) We will begin by adding an instance of the audio controller IP to the block design.

In the Vivado IP Integrator block design canvas, right-click and select Add IP.
Search for audio and double-click on zed_audio_ctrl, to add an instance to the block design.

The zed_audio_ctrl_0 block should now be visible on the canvas, as shown in Figure 5.14.

zed_audio_ctrl_0

255 AXI
l|<&s- BCLK
SDATA_I
LRCLK
S_AXI_ACLK
SDATA_O
S_AXI_ARESETN

zed_audio_ctrl

Figure 5.14: ZedBoard Audio Controller block

Make the initial connection between the Zynq PS and the zed_audio_ctrl_0 block by clicking

Run Connection Automation and clicking OK.

You should notice that there are still four unconnected ports. These are required to be made

external to connect to the physical pins of the ZedBoard’s audio codec.

Hover the mouse pointer over each of the unconnected interfaces on the zed_audio_ctrl
block until the cursor changes to a pencil. Right-click and select Make External. Alternatively,

select the interface and use the keyboard shortcut Ctrl+T.
In the Vivado IP Integrator block design canvas, right-click and select Add IP.

Search for audio and double-click on zybo_audio_ctrl, to add an instance to the block

design.

www.zyngbook.com Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

The zybo_audio_ctrl_0 block should now be visible on the canvas, as shown in Figure 5.15.

zybo_audio_ctrl_0

| dns_axt BOLK
RECDAT PBLRCLE
S_AXI_ACLK RECLRCLK
S_AXI_ARESETN ~ PBDATA

zybo_audio_ctrl

Figure 5.15: Zybo Audio Controller block

Make the initial connection between the Zynq PS and the zybo_audio_ctrl_0 block by clicking

Run Connection Automation and clicking OK.

You should notice that there are still five unconnected ports. These are required to be made

external to connect to the physical pins of the Zybo's audio codec.
Hover the mouse pointer over each of the unconnected interfaces on the zybo_audio_ctrl
block until the cursor changes to a pencil. Right-click and select Make External. Alternatively,

select the interface and use the keyboard shortcut Ctrl+T.

m The next step is to make the necessary modifications to the Zynq7 PS block.

Adventures with IP Integrator www.zyngbook.com 151

Exercise 5B: Audio in Vivado IP Integrator

152

(b) Double-click on the Zynq7 Processing System block to open the Re-customize IP window, as

shown in Figure 5.16.

IYNQ7 Processing System (5.5)

[ifid Documentation 4 Fresets [IP Location 443 Import ¥P5 Settings

Page Mavigator « | | Zyng Block Design Summary Report
Zynq Block Design
~— VO Perpheris

PS-PL Configuration P10 Apnlcation Pocessor Unit (4PU)
P11

Bank0

i 12C0
(150] 121
CAND
MIO Configuration CAN 1

Peripheral I/Q Pins

AR Certex Ko AN Cortex TA9
cPu cPu

Clock Configuration

Snoop Conro| unit
DDR. Configuration - | l 512 KB L2 Cache and Confroller

SMC Timing Calculation s

ENETO ;

ENET1

Interrupts

FLAZH M emory
Inker faces
SRAN OR

MAND

QUAD SP1

SHC Timing
Caloalstion

Clodk
Resess | Generation

Wil bl EDOBE|
PR M

Clock Ports

Processing System({PS)

Programmabie Logic{PL)

OK ” Cancel l

Figure 5.16: Re-customize IP window for Zynq PS

This view allows you to make changes to the configuration of the Zynq PS. As IP Integrator is
board aware, all of the basic settings that apply to many Zynqg development boards have been

made for us. There are a few changes, however, that must be made when using the audio codec.

First we will add a second PL fabric clock as a separate clock is required for the MCLK pin on the

audio codec.

(c) Click on Clock Configurationin the Page Navigator panel on the left hand side of the window.

Expand PL Fabric clocks in the Clock Configuration panel, and enable FCLK_CLK1.

www.zyngbook.com Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

m Change the Requested Frequency of FCLK_CLK1 to 10 MHz, as shown in Figure 5.17.

|ClockC0ﬂﬁguraﬁon Summary Report |
- Input Fregquency (MHz)| 33.333333 CPU Clock Ratio| 6:2:1 -

; Search: | O,

2%

% Component Clock Source Requested Frequency(MHz) Actual Frequency(M... Range(MHz)

B_; [Processor/Memory Clocks

[10 Peripheral Clocks
=) PL Fabric Clocks

.ID PLL = 100.000000 100.000000 0.100000 : 250.000000

IOPLL = _ 10.000000 0. 100000 : 250.000000

IOPLL 50.000000 50.000000 0.100000 : 250,000000

- [[] FoLK_CLK2
-~ [[] FOLK_CLK3 I0PLL 50 50.000000 0.100000 : 250.000000

- System Debug Clocks
- Timers

B

Figure 5.17: Adding a 10 MHz fabric clock

Change the Requested Frequency of FCLK_CLK1 to 12.288 MHz, as shown in Figure 5.18.

Clock Configuration Summary Report
/f.Basic Clocking fAdvancEd Clocking]

+

Input Frequency (MHz)| 50.000000 CPU Clock Ratio) 6:2:1 -

[N

Search: | O,

Component Clodk Source Requested Frequen... Actual Frequency(M... Range(MHz)

wi |k B4

|-- Processor/Memaory Clocks
[IO Peripheral Clocks
[l PL Fabric Clocks

- [¥] FCLK_CLKOD

IO PLL w | 100.000000 100.000000 0,100000 : 250000000

ARM PLL 12, 283000 12264151 0. 100000 : 250000000
5 . I:‘ FCLK_CLK3 IO PLL 100, 000000 100, 000000 0, 100000 : 250,000000
-- System Debug Clocks
B~ Timers

Figure 5.18: Adding a 12.288 MHz fabric clock

MNext, we must enable one of the Zynq PS's 12C communication interfaces to allow the PS to

communicate with the audio codec.
(d) Select MIO Configuration from the Page Navigator panel.

This configuration view allows us to enable/disable the PS peripherals. These peripherals can be
routed through the dedicated Multiplexed 1/0s (MIO) on the device, or through the Extended
Multiplexed 1/0s (EMIOs) which route to the PL fabric.

Adventures with IP Integrator www.zyngbook.com 153

Exercise 5B: Audio in Vivado IP Integrator

154

As we want to communicate with the audio codec (which is connected to fabric pins of the Zynq

device) we will be routing the I°C signals through the EMIOs.

(e) Expand the 1/0 Peripherals and enable the 12C 0 peripheral in the MIO Configuration panel.

EMIO should automatically be selected for 10, as shown in Figure 5.19.

MIO Configuration
4= | Bank 0 1/0 Voltage| LYeMOS 3.3V -
Q,
= | Search:
(=5
% Peripheral 10
E% -- Memory Interfaces
[=- IO Peripherals
o - EMET 0 MIO 16 ..
B [O] EMET 1
- USE 0 MIO 28 ..
- [F] UsB 1
- sD0 MIC 40 ..
- [sb1
- [7] UARTO
F- UART 1 MIO 48 ..
L EvIO

27

39

45

Bank 110 Voltage | LVCMOS 1.8V -

Signal 10 Type

Figure 5.19: Configuring the 12C interface

No more changes to the Zynq PS are required.

(f) Close the Re-customize IP window and apply the changes to the PS by clicking OK.

The IP Integrator canvas should update,

and the ZYNQ?7 Processing System block

should now look like Figure 5.20.

You should note the addition of the two

new interfaces, IIC_0 and FCLK_CLK1. As

these will be driving signals on the audio

codec, which is situated on the board

(external to the Zynq device), we must

make these external.

www.zyngbook.com

processing_system?7_0

- M_AXT_GPOdh 3
M_AXI_GPO_ACLK ZYNG ﬂCG_WAVH]_OUT-.
TTCO_WAVEL_QUT =

TTCO_WAVEZ_QUT =

FCLK_CLKO =

FCLK_RESETO_N#=

ZYNQ7 Processing System

Figure 5.20: Zedboard Zynq7 Processing System block

Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

(g) Hover the mouse pointer over each of the IIC_0 and FCLK_CLK1 interfaces on the
processing_system7_0 block until the cursor changes to a pencil. Right-click and select Make

External. Alternatively, select the interface and use the keyboard shortcut Ctrl+T.

The IP Integrator canvas should update, and the ZYNQ?7 Processing System block should now

look like Figure 5.21.

processing_system7_0

PTP_ETHERNET 0 |||
DOR<: |||

FIXED_I04 |||
(o3|
sp10_04- |||
USBIND_0= |||
M_AXT_GPO_ACLK ZYNQ? M_AXI_GPO 5 i}
TTCO_WAVEO_OUT

TTCO_WAVE1_OUT

TTCO_WAVE2_OUT

FCLK_CLKO

I FCLK_CLK1

FCLK_RESETO_N

=11

ZYNQY Processing System

Figure 5.21: Zybo Zynq7 Processing System block

You should note the addition of the two new interfaces, IIC_0 and FCLK_CLK1. As these will
be driving signals on the audio codec, which is situated on the board (external to the Zynq

device), we must make these external.

(h) Hover the mouse pointer over each of the IIC_0 and FCLK_CLK1 interfaces on the
processing_system7_0 block until the cursor changes to a pencil. Right-click and select Make

External. Alternatively, select the interface and use the keyboard shortcut Ctrl+T.

m The final addition to the Block design that we need to make, is to add a single GPIO instance
and a dual GPIO instance:
« Single-channel GPIO with a width of 2-bits to connect to the Zedboard’s audio codec’s
12C ADDR pins or a width of 1-bit to connect to the Zybo’s audio codec’s Digital Mute.
« Dual-channel GPIO with a width of 32-bits to connect to the push buttons and slide

switches for user input.

Adventures with IP Integrator www.zyngbook.com 155

Exercise 5B: Audio in Vivado IP Integrator

First we will add the single GPIO to control the Zynqg development board codec.

(i) Inthe Vivado IP Integrator block design canvas, right-click and select Add IP.
Search for gpio and double-click on AXI_GPIO, to add an instance to the block design.

(j) Run Connection Automation for the axi_gpio_0/S_AXI interface, to connect the GPIO
controller to the Zynq PS via the AXI Interconnect (do not Run Connection Automation for

the GPIO’s output interface).

(k) Open the Re-customize IP window by double-clicking on the axi_gpio_0 block. The window,

as shown in Figure 5.22, will open.

AXI GPIO (2.0) ’

ﬁj Documentation || IP Location

[] Show disabled ports Compenent Name | axi_apio_0

Board | IP Configuration

Associate IP interface with board interface

1P Interface Board Interface

GPIO Custom he

GPIO2 Custom hd
Clear Board Parameters

[] Enable Interrupt

Figure 5.22: Re-customize IP window (GPIO)

() Select the IP Configuration tab.

m Enter 2 as the GPIO Width, as shown in Figure 5.23, and close the window by clicking OK.

Board- IP Configuration

GPIO
[All Inputs
[] All Cutputs
GPIO Width 2 [1.32]
Default Output Value | 0x00000000 [0x00000000, 0xFFFFFFFF]
Default Tri State Value | OxFFFFFFFF [0x00000000, 0xFFFFFFFF]

Figure 5.23: Zedboard GPIO width setting

156 www.zyngbook.com Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

Enter 7 as the GPIO Width, as shown in Figure 5.24, and close the window by clicking OK.

Board IP Configuration

GPIO
All Inputs

All Outputs

GPIO Width 1 [1-33
Default Qutput Value | 0x00000000 [0%00000000, 0XFFFFFFFF]

Default Tri State Value | DxFFFFFFFF [0%00000000, OxFFFFFFFF]

Figure 5.24: Zybo GPIO width setting

m (m) Make the GPIO interface of the axi_gpio_0 block external.
Next we will add a second instance of the AXI GPIO Controller

(n) Add aninstance of the AXI_GPIO IP to the block design and Run Connection Automation for
S_AXI to connect the new GPIO controller to the Zynq PS via the AXI Interconnect (do not

Run Connection Automation for the GPIO’s output interface).

(0) The newly created AXI GPIO block must now be configured to allow for Dual Channel

operation.

Double-click on the axi_gpio_1 block to open the Re-customize IP window.

In the IP Configuration tab, select the option to Enable Dual Channel, and click OK.

m You should see that the axi_gpio_1 block now has two output ports, 1 each to connect to
the push buttons and the slide switches on the ZedBoard:
axi_qgpio_1

=|||#s_aa

B nak GPIO4F ||

_awi_anesatn - "

AXI GPIO

Run Connection Automation for /axi_gpio_1/GPIO and select btns_5bits as the option for
Select Board Interface.

Click OK.

Run Connection Automation for /axi_gpio_1/GPl02 and select sws_8bits as the option for

Select Board Interface.

Adventures with IP Integrator www.zyngbook.com 157

Exercise 5B: Audio in Vivado IP Integrator

158

Click OK.

You should see that the axi_gpio_1 block now has two output ports, 1 each to connect to

the push buttons and the slide switches on the Zybo:

axi_gplo_1
=||[4rs a1
I -'_ran?_a A crio==||

_axi_amnesetn B "

AXI GPIO

Run Connection Automation for /axi_gpio_1/GPIO and select btns_4bits as the option for
Select Board Interface.

Click OK.

Run Connection Automation for /axi_gpio_1/GPl02 and select sws_4bits as the option for
Select Board Interface.

Click OK.

The Zynq Processing System address of each IPCore will now be re-configured to increase

their efficiency and reduce unused address space.

Select the Address Editor tab from the Block Design window, as highlighted in Figure 5.25.

Expand All button K——Address Editor tab

iagram ¢ |] Address Editor x O 2 =

Cell Slave Interface Base Mame Offset .ﬁ.ddrelss Range High Address
 [i=-1F processing_system7_0
=I- B Data (32 address bits : 4G]
ﬂ axi_gpio_1 5_AXI Reg Ox4121 0000 6% « 0x412]1 FFFF
ﬂ axi_gpio_0 5_AXI Reg 0x4120_0000 6% ~ 0x4120 FFFF
ﬂ zed_audio_ctrl_0 5_AXI regd 0x43C3_0000 16k = 0x43C3_3FFF
ﬂ led_controller_0 S00_ANXI S00_AXI_reg Ox43C2_0000 4 » 0x43C2_OFFF
ﬂ nco_0 S_AXI_AXIALITES Reg 0x43C1_0000 32« 0x43C1_TFFF
“mm |ms_peore_0 AXI_Lite regd 0x43C0_0000 6%~ 0x43CO0_FFFF

Figure 5.25: Zedboard Address Editor tab

Click the Expand All button, as highlighted in Figure 5.25.
Check the assigned Range for each of the peripheral cells against Figure 5.25.
If they do not match those in Figure 5.25, you must manually change the ranges so that they

do match Figure 5.25. If they match those in Figure 5.25, you can skip this step and move on

www.zyngbook.com Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

to Step (q).

Select the Address Editor tab from the Block Design window, as highlighted in Figure 5.26.

Expand All button Address Editor tab

Diagram > § [Address Editor

-1
Cell Slave Interface Base Mame Offset Address Range High Address

*|'=-1F processing system7 0

H:,: —ﬂ Data (32 address bits : 4G)
mm zybo_audio_ctrl_0 S_AxI regl 0x&000_0000 16 = 0x6000 3FFF
:,_‘:? == gxi_gpio_1 5_AXI Reqg Ox4121 0000 o + 0x4l1l2l FFFF
== gxi_gpio_0 S_AXI Reqg Oxd4120_0000 o + 0x4l120 FFFF
= |ms_pcore_0 AXI4 Lite regQ 0x43C2 0000 o + 0x43C2 FFFF
== oo 0 S5_AXI_AXIALITES Reg 0x43C1_0000 32K = 0x43Cl_TFFF
“ma led_controller_0 S00_AxI S00_AXI_reg 0x43C0_0000 4K * 0x43C0_OFFF

Figure 5.26: Zybo Address Editor tab

Click the Expand All button, as highlighted in Figure 5.26.

Check the assigned Range for each of the peripheral cells against Figure 5.26.

If they do not match those in Figure 5.26, you must manually change the ranges so that they
do match Figure 5.26. If they match those in Figure 5.26, you can skip this step and move on

to Step (q).

M(q) Return to the block design by selecting the Diagram tab in the IP Integrator window.

() Clickthe Regenerate Layout button, 3%/, to regenerate the layout of the various IP blocks and

make the block design easier to follow.

Adventures with IP Integrator www.zyngbook.com 159

Exercise 5B: Audio in Vivado IP Integrator

m Your complete block design should be similar to Figure 5.27.

processing_system7_0

DOR
FIXED_IO
1C_0

s o0 pck 7NN

FOLK_C1K1 D FCOLK_ K1

IYNGT Processing System

led_controller_0
rst_processing_system?_0_100M LEDs_out[7:
P g system? 0. processing_system?_0_axi_perph -ouf7:0]
siwest syne_clk iy rese

Je Bus_stuct resea]010] led_controller_v1.0 {Pre-Production)
—foux_reset_in peripheral_reset{0:0] axi_gpio_0
=il deg sys] RESETH il
=t _lacked perpheral_aresetn| 0:0] ——500_ACK

- 0_ARESETH
e e Resed
Processor Syster Reset Q_ARLK

Axl GPID
2ed_audio_ctd_0

| s
: soaTh 1 BOLK| BCLK
2 ARESETN e LRCLK
3_ACLE F

LROLK
- SOATA O] 3 SDATA_O
3_ARESETM

4 A0K zod_audio_ctrl
4 ARESETM Irs_peare_0
g —905_ACLK I
WX14 Lite
5_ARESETH ="

AN Interconnect

SDATA_I [Iz 4 Lite_MRESETN

Mea (Pre-Praduction)
axi_gpia_L

= j-s_m; .| bitns_Shits
_,mﬁ_a&m GPI02 || sws_Bhits

Al GPIO

Figure 5.27: Zedboard Completed block design

160 www.zyngbook.com Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

Your complete block design should be similar to Figure 5.28.

progessing_system?_0

PTP_ETHERMET 0-1-
DODR-1- DDR
FIXED_1O.7. FIXED IO
nc.a-n e_o
SDI0._0.
= USEIND_0
AXI_GPO_ACLE. M_ART_GPO I+ | e
ZYNO TTCO_WAVED_OUT =
TTCO_WAVEL OUT =
TTCO_WAVE2_OUT =
FOLK_CLK
FOLK_CLK1 D FOLK_aK1
FOLK_RESETO_NEg-—
LYNGT Processing System
led_contraller_0
=|-sna_ax
rst_processing system?_0_100M 00_ai_aclk LEDs_oulf 3:0]| LEDs_out[3:0]
processing_system?_0_axi_periph .
west, syne, di il et
i Bnis_struict_ress(0:0]fm izl 1+ S00_ANT led_contraller_w1.0 {Pre-Production)
—ix_resst_in periheml_resed 0:0] W ——JACLE zyba_audia_drl 0
—nb_debug_sys st interconmect_aresetn] 0:0])| .
—pern_Jocked periphem]_aresetn]0 1] — 0_ACLE - “;ASJ'J’:): g D:::::CLK
0_MRESETH LK o
Processor System Reset s i 5_AT_AQLK RECLACLK RECLRCLK
= 00_AXT 2 [AXI_ARESETN PEDATA -—DPBDATA
o B P _—
——0 L ACLE MO2_AXL T #ybo_audia_drl
1_ARESETH €S “E axi_gpio_0
MO3_ANI]
p —M2AOK miim Ll -
2 ARESETM HAR et
s 05T T | _mi_a:;n GAID T '—DG’K}
. a3
el AX GPIO
s ARESETH Ims_peore_0
—— 05 ACLE -
R
5_ARESETH b
IPCORE_CLK
{IPCORE_RESETN
AN Interconnect 004 Le AQ
RECDAT D 4 _Lite ARESETH
Irrs_pcore_vl 0
nca 0
18 _and_AXILRES, [vt s
_clk
rsLn ’
Nco (Pre-Production)
ai_gpio_1
- S_md IO btns_bits
i =10 sws_bits
_a_amsem
AN GPIO

Figure 5.28: Zybo Completed block design

m (s) Save the block design.

Before we can run synthesis and implementation for our design, we must generate the RTL files

for our block design.

(t) Generate a top-level HDL wrapper file, by right-clicking on ip_design in the Sources tab and
selecting Create HDL Wrapper.
In the Create HDL Wrapper window, select Let Vivado manage wrapper and auto-update,
and click OK.

Adventures with IP Integrator www.zyngbook.com 161

Exercise 5B: Audio in Vivado IP Integrator

The next task that we have to do in Vivado before we can run synthesis and implementation of
the design, is to add a constraints file which will map the external interfaces of our design to

specific pins on the Zynq device.

(u) Select Add Sources from the Project Manager section of Flow Navigator.
In the Add Sources window, select Add or Create Constraints, and click Next.

In the Add or Create Constraints window, click the + symbol and then select Add Files...

m Navigate to:

C:/Zynq_Book/sources/zedboard/adventures_with_ip_integrator/constraints

Select adventures_with_ip.xdc, and click OK.

Navigate to:
C:/Zynq_Book/sources/zybo/adventures_with_ip_integrator/constraints

Select adventures_with_ip.xdc, and click OK.
m Click Finish to close the Add Sources window, and import the constraints file.

(v) Open the constraints file by expanding the Constraints section of Sources tab, and double-

clicking on adventures_with_ip.xdc.

The top section of the file contains the constraints which map the individual bits of the LEDs_out
interface to the corresponding pins on the Zynq device, and you will have seen these before in

the first exercise of the previous tutorial.

162 www.zyngbook.com Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

mThe bottom section of the file, as shown in Figure 5.29, contains the constraints which map the
various external ports of the design which relate to the audio codec, to their corresponding pins

on the Zynq device.

ZedBoard Audio Codec Constraints

set_property
set_property

set_property
set property

set property
set property

set property
set_property

H#MCLK
set_property
set_property

set property
set property

set property
set property

set_property
set_property

set_property
set_property

Adventures with IP Integrator

PACKAGE_PIN AA6 [get ports BCLK]
IOSTANDARD LVCMOS33 [get ports BCLK]

PACKAGE_PIN Y6 [get ports LRCLK]
IOSTANDARD LVCMOS33 [get ports LRCLK]

PACKAGE_PIN AA7 [get ports SDATA I]
IOSTANDARD LVCMOS33 [get ports SDATA I]

PACKAGE_PIN Y8 [get ports SDATA O]
IOSTANDARD LVCMOS33 [get ports SDATA_O]

PACKAGE_PIN AB2 [get ports FCLK_CLK1]
IOSTANDARD LVCMOS33 [get ports FCLK_CLK1]

PACKAGE_PIN AB4 [get ports iic_@ scl io]
IOSTANDARD LVCMOS33 [get ports IIC_ @ scl _io]

PACKAGE_PIN AB5 [get ports iic_@ sda_io]
IOSTANDARD LVCMOS33 [get ports IIC_@ sda_io]

PACKAGE_PIN AB1 [get ports {gpio_tri_io[0]}]
IOSTANDARD LVCMOS33 [get ports {GPIO_tri_io[@]}]

PACKAGE_PIN Y5 [get ports {gpio_tri_io[1]}]
TOSTANDARD LVCMOS33 [get ports {GPIO_tri_io[1]}]

Figure 5.29: ZedBoard audio codec constraints

www.zyngbook.com 163

Exercise 5B: Audio in Vivado IP Integrator

164

on the Zynq device.

The bottom section of the file, as shown in Figure 5.30, contains the constraints which map the

various external ports of the design which relate to the audio codec, to their corresponding pins

Zybo Audio Codec Constraints

set_property
set_property

set_property
set property

set property
set property

set property
set_property

set_property
set_property

MCLK
set property
set property

PACKAGE_PIN K18 [get ports BCLK]
IOSTANDARD LVCMOS33 [get ports BCLK]

PACKAGE_PIN L17 [get ports PBLRCLK]
IOSTANDARD LVCMOS33 [get ports PBLRCLK]

PACKAGE_PIN M18 [get ports RECLRCLK]
IOSTANDARD LVCMOS33 [get ports RECLRCLK]

PACKAGE_PIN K17 [get ports RECDAT]
IOSTANDARD LVCMOS33 [get ports RECDAT]

PACKAGE_PIN M17 [get ports PBDATA]

IOSTANDARD LVCMOS33 [get ports PBDATA]

PACKAGE_PIN T19 [get ports FCLK_CLK1]
TOSTANDARD LVCMOS33 [get ports FCLK_CLK1]

#I2C O Interface

set property
set property

set_property
set_property

PACKAGE_PIN N18 [get ports iic_@ _scl io]
IOSTANDARD LVCMOS33 [get ports iic @ scl_io]

PACKAGE_PIN N17 [get ports iic_@_sda_io]
IOSTANDARD LVCMOS33 [get ports iic_©_sda_io]

#GPIO @[0@] Digital Mute

set_property
set_property

PACKAGE_PIN P18 [get ports {gpio_tri_io[@0]}]
TIOSTANDARD LVCMOS33 [get ports {gpio_tri io[@]}]

Figure 5.30: Zybo audio codec constraints

www.zyngbook.com Adventures with IP Integrator

Exercise 5B: Audio in Vivado IP Integrator

m Next, we will create a bitstream so that we can program the PL of the Zynq device with our design.

(w) In Flow Navigator, select Generate Bitstream from the Program and Debug section.
At the No Implementation Results Available window, click Yes to launch synthesis and
implementation. This may take a few minutes depending on the speed of your computer.
When bitstream generation is complete, select Open Implemented Design in the Bitstream

Generation Completed window, and click OK.

Finally, we can export the hardware to the SDK, where we will create a software application to

control the system in the next exercise.

(x) Select File > Export > Export Hardware... from the Menu Bar.

Ensure that the option to Include Bitstream is selected, and click OK.

(y) Launch the SDKin Vivado by selecting File > Launch SDK from the Menu Bar and Click OK.

This concludes this exercise of audio on a Zynq development board. You should now be familiar

with:

Making the required changes to the Zynq PS in order to use the audio codec on the
ZedBoard and/or Zybo.

Making the required external connections to allow the Zynq PL to be connected to the
audio codec via the external Zynq device pins.

Using a constraints file to map the external interfaces of the design which relate to the

audio codec, to the corresponding pins on the Zynq device.

Adventures with IP Integrator www.zyngbook.com 165

Exercise 5C: Creating an Audio Software Application in SDK

In this final exercise we will be creating a software application which ties together all of the IP
modules which we have created, to create a DSP-oriented system. The procedure of setting up

the ZedBoard and Zybo audio codec via the hardware registers will also be introduced.

Once the SDK has launched from the previous exercise, we can start by creating a new

application.

(@) Select File > New > Application Project from the Menu Bar.
In the New Project dialogue, enter adventures_with_ip as the Project name.
By default the option to create a new Board Support Package will be selected.

Click Next.

(b) Inthe Templates dialogue, select Empty Application, and click Finish.

You should recall that when we created the custom IP peripherals in the previous tutorial a set of
software driver files were generated for each. We must now point SDK to those driver files. This is

done by adding new repositories to the SDK project.

166 www.zyngbook.com Adventures with IP Integrator

Exercise 5C: Creating an Audio Software Application in SDK

(c) Navigate to Xilinx Tools > Repositories in the Menu Bar.

In the Repositories Preferences window, click on New, as shown in Figure 5.31.

type filter text Add, remove or change the order of SDK's software repositories.
General
Ant
C/C++
Help
Install/Update
Java

Local Repositories (available to the current workspace)

Up
Remote Systems

Run/Debug Down
Team
Terminal
Kilinx SDK

Boot Image

B5P Preferences

Flash Programming

Hardware Specification

Log Information Level

Repositories

XMD Startup

Global Repositories (available across workspaces)

SDK Installation Repositories
Ci/Kiline/SDE/2014 .4/ data\embeddedsw

Rescan Repositories

Mote: Local repository settings take precedence over global repository settings.

Restore Defaults] ’ Apply

Figure 5.31: SDK Repository Peripherals window

(d) Add the LED Controller drivers by browsing to the directory:
C:\Zynq_Book\ip_repo\led_controller_1.0 and clicking OK.
(e) Click New.
Add the NCO drivers by browsing to the directory:
C:\Zynq_Book\ip_repo\xilinx_com_hls_nco_1_0
and clicking OK.

Upon closing the preferences window, SDK will automatically scan the repository and rebuild the

project to include the driver files.

Adventures with IP Integrator www.zyngbook.com 167

Exercise 5C: Creating an Audio Software Application in SDK

168

We must now check that the newly imported drivers have been assigned to their corresponding

peripherals.

(f) The system.mss tab should be open in the Workspace. If it is not, open it by expanding

adventures_with_ip_bsp in Project Explorer and double-clicking on system.mss.

(g) Atthe top left of the system.mss tab, click Modify this BSP’s Settings.

The Board Support Package Settings window will open.

(h) Select drivers from the left-hand menu and check that the led_controller driver is assigned
to the led_controller_0 component and the nco_top driver is assigned to the nco_0

component, as highlighted in Figure 5.32.

I led_controller 1.00.a I
gEnEric 1.00.a
I nco_top 1.00.a I

Figure 5.32: Driver assignment

Click OK.
The project will now rebuild.

The LMS IP core that we created with MathWorks HDL Coder and the audio codec IP also have
software drivers, but due to their directory structures, we must import their drivers to the

workspace rather than use a repository.

(i) In the Project Explorer panel, expand adventures_with_ip, right-click on src and select
Import.
In the Import window, expand General and double-click on File System.
Click Browse in the top right corner, and navigate to
C:\Zynq_Book\hdl_coder_Ims\hdl_prj\ipcore\lms_pcore_v1_00_a\include.
Click OK, to import the LMS IP driver.
In the right-hand panel, select Ims_pcore_addr.h and click Finish.
Note: This directory will only be available if you have completed Exercise 4B of Tutorial 4.
If you have not completed this exercise, you can obtain Ims_pcore_addr.h from the
Zedboard directory:

C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\drivers

www.zyngbook.com Adventures with IP Integrator

Exercise 5C: Creating an Audio Software Application in SDK

or the Zybo directory:

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\drivers

() The audio.h header file should be imported using the correct directory depending on your

chosen Zynq development board.

The Zedboard directory:
C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\drivers.
The Zybo directory:

C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\drivers.
(k) With all the driver files for the IP imported, we can import the source files for our application.

Follow the same procedure as in Step (i) to import the following files from the
C:\Zynq_Book\sources\zedboard\adventures_with_ip_integrator\software
directory:

« adventures_with_ip.h

« adventures_with_ip.c

« audio.c

« ip_functions.c

Follow the same procedure as in Step (i) to import the following files from the
C:\Zynq_Book\sources\zybo\adventures_with_ip_integrator\software
directory:

« adventures_with_ip.h

« adventures_with_ip.c

« audio.c

« ip_functions.c
MThe source files will be imported and the application should build.

(I) Open the header file adventures_with_ip.h by double-clicking on it in Project Explorer.

Adventures with IP Integrator www.zyngbook.com 169

Exercise 5C: Creating an Audio Software Application in SDK

170

This is the main header file for the software application. At the top of the file you should see a list
of included header files, which define a variety of functions which are used in the software

application.

Further down the file you should see the inclusion of the custom IP header files which we

imported earlier:

/* __ *
& Custom IP Header Files &
K L L o o o o o e e e e e e e e e e e e */

#include "audio.h"
#include "lms_pcore_addr.h"
#tinclude "xnco.h"

As an example of one of the header files that was created during the IP creation process, we will

open the header for the LMS IP core.

(m) In the Outline tab on the right hand side of the SDK window, double click on

Ims_pcore_addr.h.

In the LMS header file, you should see the following definitions:

#tdefine IPCore_Reset_lms_pcore ox0 //write Ox1 to bit © to reset IP core

#define IPCore_Enable_lms_pcore ©x4 //enabled (by default) when bit @ is ox1
#define 1IPCore_Strobe_lms_pcore ©0x8 //write 1 to bit @ after write all input data
#define 1IPCore_Ready_lms_pcore OxC //wait until bit @ is 1 before read output data

#tdefine x_k__Data_lms_pcore 0x100 //data register for port x(k)
#define d_k__Data_lms_pcore 0x104 //data register for port d(k)
#tdefine e_k__Data_lms_pcore 0x108 //data register for port e(k)

These define the memory-mapped address offsets of the various signals of the LMS peripheral.
Data can be transferred between the peripheral in the PL and the software in the PS by writing to,
or reading from the these offset addresses. The actual address that would be used to access these

signals would be BASE ADDRESS + OFFSET.

Each IP peripheral that we added to our block design in IP Integrator is automatically assigned a
base address in memory. These addresses can be determined from a Xilinx parameters C header
file which is automatically created when exporting an IP Integrator design that contains a Zynq

Processing System. The header file is called xparameters.h.

www.zyngbook.com Adventures with IP Integrator

Exercise 5C: Creating an Audio Software Application in SDK

We shall now explore the Xilinx parameters header file.
(n) Switch back to the adventures_with_ip.h tab in the Editor window.

xparameters.h is included in this main header file, and is therefore accessible from the Outline

tab.
(o) Open xparameters.h by double-clicking on it in the Outline tab.

Here you should see a list of memory base address definitions, along with a number of other

parameters.

As we were previously looking at the LMS header file, we will look at the definition of the base

address for the LMS peripheral.
(p) Scroll down the file until you see the following lines:
/* Definitions for peripheral LMS_PCORE_© */

#define XPAR_LMS_PCORE_O_BASEADDR 0x43C00000
#define XPAR_LMS_PCORE_O_HIGHADDR ©x43COFFFF

Here we see the definitions of both the base and high addresses in memory for the LMS
peripheral. This will vary depending on the value the Base Address was set to in Exercise 5B, Step
(p). The address range was set to a value of 64 Kilo-Bytes. The difference between the high
address and the base address is @xFFFF, the LMS peripheral has an addressable range of 65536
bits, or 64 Kilo-Bytes.

Referring back to the memory-mapped address offsets for the LMS block in Step (m), if we, for
example, wanted to write data to the input port x(k), we would do this by writing the desired

value to the BASE ADDRESS + OFFSET, which in this case would be:
XPAR_LMS_PCORE_O BASEADDR + x_k__Data_lms_pcore = 0x43C10000 + 0x100
Giving a unique address of 9x43C10100.

We will now take a look at the main software application file.

Adventures with IP Integrator www.zyngbook.com 171

Exercise 5C: Creating an Audio Software Application in SDK

172

(g) Open the source file adventures_with_ip.c by double-clicking on it in Project Explorer.

This file contains the main function, and another function which implements an interactive menu

that allows the user to control the system using keyboard commands via the terminal.
Take a moment to look over the file and note the function calls which are made.

In the main() function, the first set of functions are called to setup and configure the audio

codec. These functions are defined in audio.c, which we will look at next.
(r) Open audio.c.

Here we have the functions which are called to initialise the audio codec and the required 1°C

interface in the Zynq PS.

We don’t want to go into great detail about the functionality contained here, but in basic terms
the purpose of these functions is to configure the audio codec by writing to the codec’s control
registers.

Each control register has a unique address which can be accessed via the 12C serial interface.

The control register addresses are defined in the audio.h header file.
(s) Open audio.h.

This file contains a number of definitions relating to the audio codec and the 12C interface, as well

as some prototype function definitions.

You should see an enumerated type which lists all of the audio codec’s control register addresses,

which were mentioned in the previous step.

More information on the audio codecs for both the Zedboard and Zybo can be found in the
following data sheets respectively:

http://www.analog.com/static/imported-files/data_sheets/ADAU1761.pdf

http://www.analog.com/media/en/technical-documentation/data-sheets/SSM2603.pdf

Next we will have a look at the functions which control the custom IP peripherals in the PL.

www.zyngbook.com Adventures with IP Integrator

Exercise 5C: Creating an Audio Software Application in SDK

(t) Open ip_functions.c.

This file contains the functions which control the IP peripherals, as well as some functions to

initialise drivers for the GPIO and NCO.
The three functions of interest are:

« audio_stream() — Implements stereo audio loopback between the input and output
ports of the audio codec. Left and right audio samples are read in from the audio
controller peripheral’s 125 receive register and are then written back out to the
controller’s IS transmit register.

« tonal_noise() — This function builds upon the audio loopback in audio_stream(). A
step size value is input via the slide switches on the board. The corresponding value is
then output to the LEDs on the board by writing to the memory-mapped register of the
LED controller peripheral. The step size value is also output to the NCO peripheral using
the XNco_Set_step_size_V() function defined by the NCO driver file. A sinusoidal
sample created by the NCO peripheral is the read in by the
XNco_Get_sine_sample_V() NCO driver function and, as in the previous audio
streaming function, left and right audio samples are received from the audio codec. The
sinusoidal noise component is then added to the left and right audio samples before
being written to the audio controller for output to the codec.

« 1lms_filter() — This function combines the functionality of the NCO and the LMS
peripherals to create a system which adds tonal noise to an audio signal, before using an
LMS adaptive filter for noise cancellation to remove the added noise. As in the
tonal_noise() function, sinusoidal samples are generated from the NCO peripheral
and added to the left and right audio samples from the audio controller. The sinusoidal
sample is then input to the LMS as the input sample x(k) and the sample with added
tonal noise is input as the desired signal d (k). The resulting output of the LMS peripheral
is only read if the user presses any of the push buttons on the board, otherwise the
corrupted audio sample is retained. This allows the user to verify that the LMS filter

peripheral is removing the noise.

Adventures with IP Integrator www.zyngbook.com 173

Exercise 5C: Creating an Audio Software Application in SDK

174

Now that we have had a look at the functions and definitions contained in the various source and
header files, we can move on to actually implementing the system on the Zynq development
board.

To begin, we will program the Zynqg PL with the bitstream that we generated in the previous

exercise.

Note: At this stage ensure that the Zynq development board is powered on and both the PROG
and UART USB ports are connected to your host computer. The Zybo has a single USB port for
both PROG and UART connections and the Zedboard has two USB ports, one for PROG and
another for UART.

You should also ensure that the board is configured to boot from JTAG.

(u) Select Xilinx Tools > Program FPGA from the Menu Bar. The Program FPGA window should
be configured as in Figure 5.33.

5]
@ProgramF_ ||

Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

i

Hardware Configuration

Hardware Platform: ’ ip_design_wrapper_hw_platform_0 -]

Connection: ’Local v] [New]

Device: Auto Detect
Bitstream: ip_design_wrapper.bit Browse..
EMM,/MMI File: Search... | | Browse.,

Software Cenfiguration
Processor ELF File to Initialize in Block RAM

4 L1} 2

@j [Program l ’ Cancel

Figure 5.33: Program FPGA window

Click Program.
The Zynq PL on the board will be configured with the bitstream and the DONE LED should

illuminate.

www.zyngbook.com Adventures with IP Integrator

Exercise 5C: Creating an Audio Software Application in SDK

At this stage we must invoke PUTTY — the terminal program which you should have downloaded

at the beginning of this tutorial.

(v) At the location which you downloaded PuTTY, double-click PuTTY.exe. As you downloaded
the executable file, Windows may present a security warning. Accept the warning by clicking

Run.

(w) PuTTY Configuration should open, as shown in Figure 5.34.

[=l- Session Basic options for your PuTTY session
FE Logging

(- Teminal

- Keyboard

- Bell

Specify the destination you want to connect to
Host Mame (or IP address) Port

- Features Connection type:
- Window “)Raw () Telnet) Rlogin @ §5H
- Appearance

- Behaviour
. Translation Saved Sessions

Load, save or delete a stored session

- Selection

- Colours Default Settings
- Connection zed

Close window on exit:
) Mways) Newer @) Only on clean exit

Figure 5.34: PuTTY

(x) Select Serial as Connection type (highlighted in Figure 5.34) and configure the settings as
specified in Figure 5.35.

Specify the destination you warnt to connect to

Serial line Speed
Com3a 115200
Connection type:

~) Raw 1 Telmet () Rlogin () S5H @) Serial

Figure 5.35: PuTTY configuration

NOTE: The value of the Serial line entry will vary depending on which the USB UART cable is
connected to.
In order to determine this value on a Windows system, open the Device Manager and identify

the COM port which may be named ‘USB Serial Port'.

Adventures with IP Integrator www.zyngbook.com 175

Exercise 5C: Creating an Audio Software Application in SDK
(y) Click Open, to open the terminal connection. The PuTTY terminal window will open.
With the terminal connection open, the final step is the run the software on the Zynq PS.

(z) Right-click on adventures_with_ip in Project explorer and select Run As > Launch on

Hardware (GDB).

In the PUTTY terminal you should see the following output:

Note: At this point you should attach an audio patch cable between the PC speaker output and
the board’s LINE IN input. Also, connect headphones to the board’s LINE OUT input. These

connections are highlighted in Figure 5.36.

LINE IN MIC ° |LINE OUT HPH OUT
Figure 5.36: ZedBoard Audio Jacks

In the PUTTY terminal you should see the following output:

176 www.zyngbook.com Adventures with IP Integrator

Exercise 5C: Creating an Audio Software Application in SDK

Note: At this point you should attach an audio patch cable between the PC speaker output and
the board’s LINE IN input. Also, connect headphones to the board’s HPH OUT input. These

connections are highlighted in Figure 5.37.

Figure 5.37: Zybo Audio Jacks

M(aa) Open the audio file

C:\Zynq_Book\sources\input\original_speech.wav
in an audio player, and begin playback.
Note: It may be useful to turn on the repeat setting in the audio player for continuous
playback.

(ab)Set all switches on the Zynq development board to the ‘off’ position.

(ac) In the PUTTY terminal window, press the ‘s’ key on your keyboard.
This will prompt the software application to enter the audio_stream() function which we
looked at earlier.
You should be able to hear audio of speech via the headphone connection.

(ad)Press the ‘g’ key on the keyboard to return to the menu.

(ae)Press the ‘n” key on the keyboard. This will prompt the application to enter the
tonal_noise() function.
Initially you should hear the same audio signal.
You should note that currently there is no step size being input to the NCO.
Push slide switch SWO into the on position. You should now be able to hear a sinusoidal tone
which has been added to the audio signal. LED 0 should also be lit.
Experiment with different step size values by varying the on/off values of slide switches SW1
and SW2. This will vary the frequency of the tonal noise. Note the updates in Putty.

(af) Press the ‘g” key on the keyboard to return to the menu.

Adventures with IP Integrator www.zyngbook.com 177

Exercise 5C: Creating an Audio Software Application in SDK

(ag)Press the “‘f key on the keyboard. This will prompt the application to enter the
Ims_filter() function. The basic functionality here is the same as in the previous NCO
function, and you can add tonal noise to the audio signal using the slide switches.

With tonal noise being added to the audio signal, press and hold any of the push buttons on
the board. The sinusoidal tone will be adaptively filtered by the LMS, and the tonal noise

removed.

This concludes this exercise on the creation of an audio application in the SDK. You should now

be familiar with:

« The automatically generated xparameters.h header file, and its contents.

« Identifying memory-mapped base addresses and offsets for communication between
software running on the Zynq PS and peripherals in the PL.

« The procedure of configuring the ZedBoard’s ADAU1761 and Zybo's SSM2603 audio
codec via the control register addresses.

« Receiving and sending audio samples to/from the audio codec via an audio controller
block in the PL.

+ The process of communicating with custom peripherals in the PL via generated software

drivers.

178 www.zyngbook.com Adventures with IP Integrator

	Title Page
	Acknowledgements
	How to Use This Book
	Contents
	1. First Designs on Zynq
	1A. Creating a First IP Integrator Design
	1B. Creating a Zynq System in Vivado
	1C. Creating a Software Application in the SDK

	2. Next Steps in Zynq SoC Design
	2A. Expanding the Basic IP Integrator Design
	2B. Creating a Zynq System with Interrupts in Vivado
	2C. Creating a Software Application in the SDK
	2D. Adding a Further Interrupt Source

	3. Designing With Vivado HLS
	3A. Creating Projects in Vivado HLS
	3B. Design Optimisation in Vivado HLS
	3C. Interface Synthesis

	4. IP Creation
	4A. Creating IP in HDL
	4B. Creating IP in MathWorks HDL Coder
	4C. Creating IP in Vivado HLS

	5. Adventures with IP Integrator
	5A. Importing IP to the Vivado IP Catalog
	5B. Audio in Vivado IP Integrator
	5C. Creating an Audio Software Application in SDK

